At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
Explanation:
To calculate the solute potential (\( \Psi_s \)) of a 2.0 M sucrose solution at 20 degrees Celsius under standard atmospheric conditions, we need to use the following formula:
\[ \Psi_s = -i \cdot n \cdot R \cdot T \]
Where:
- \( i \) is the ionization constant (for sucrose, which does not ionize in solution, \( i = 1 \)),
- \( n \) is the number of particles into which the solute dissociates (for sucrose, \( n = 1 \)),
- \( R \) is the gas constant (\( 0.0831 \) liter bar per mole per Kelvin),
- \( T \) is the temperature in Kelvin.
Given:
- Concentration of sucrose solution, \( C = 2.0 \) M,
- Temperature, \( T = 20 \) degrees Celsius.
First, convert temperature to Kelvin:
\[ T = 20 + 273.15 = 293.15 \text{ K} \]
Now, calculate the solute potential:
\[ \Psi_s = -1 \cdot 1 \cdot 0.0831 \cdot 293.15 \]
\[ \Psi_s = -24.426 \]
Therefore, the solute potential (\( \Psi_s \)) of a 2.0 M sucrose solution at 20 degrees Celsius under standard atmospheric conditions is approximately \( \boxed{-24.426} \) bars.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.