Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's solve the given problem step by step to determine which equation is equivalent to [tex]\( 4[x + 2(3x - 7)] = 22x - 65 \)[/tex].
1. First, simplify the left side of the equation [tex]\( 4[x + 2(3x - 7)] \)[/tex]:
[tex]\[ 4[x + 2(3x - 7)] \][/tex]
Start by simplifying inside the parenthesis:
[tex]\[ 3x - 7 \][/tex]
Then multiply by 2:
[tex]\[ 2(3x - 7) = 6x - 14 \][/tex]
Now, substitute back into the original expression:
[tex]\[ 4[x + (6x - 14)] = 4[x + 6x - 14] = 4[7x - 14] \][/tex]
Finally, distribute the 4:
[tex]\[ 4(7x - 14) = 28x - 56 \][/tex]
2. Now, compare the simplified left side to the right side [tex]\( 22x - 65 \)[/tex]:
[tex]\[ 28x - 56 = 22x - 65 \][/tex]
3. Next, let's look at the given list of equations and see which one matches [tex]\( 28x - 56 = 22x - 65 \)[/tex]:
Equation 1:
[tex]\[ 28x - 7 = 22x - 65 \][/tex]
To check if this is equivalent, we rearrange it:
[tex]\[ 28x - 22x - 7 = -65 \rightarrow 6x - 7 \neq -65 \][/tex]
This does not match the simplified equation [tex]\( 28x - 56 = 22x - 65 \)[/tex].
Equation 2:
[tex]\[ 28x - 56 = 22x - 65 \][/tex]
This equation exactly matches the simplified form! Therefore, it is equivalent to the original equation [tex]\( 4[x + 2(3x - 7)] = 22x - 65 \)[/tex].
Equation 3:
[tex]\[ 10x - 14 = 22x - 65 \][/tex]
Rearranging:
[tex]\[ 10x - 22x - 14 = -65 \rightarrow -12x - 14 = -65 \rightarrow -12x = -51 \rightarrow x = \frac{51}{12} \][/tex]
This does not match the simplified equation.
Equation 4:
[tex]\[ 16x - 28 = 22x - 65 \][/tex]
Rearranging:
[tex]\[ 16x - 22x - 28 = -65 \rightarrow -6x - 28 = -65 \rightarrow -6x = -37 \rightarrow x = \frac{37}{6} \][/tex]
This also does not match the simplified equation.
After carefully examining all the options, we find that Equation 2:
[tex]\[ 28x - 56 = 22x - 65 \][/tex]
is the one that is equivalent to the original equation.
Thus, the correct answer is:
[tex]\[ \boxed{2} \][/tex]
1. First, simplify the left side of the equation [tex]\( 4[x + 2(3x - 7)] \)[/tex]:
[tex]\[ 4[x + 2(3x - 7)] \][/tex]
Start by simplifying inside the parenthesis:
[tex]\[ 3x - 7 \][/tex]
Then multiply by 2:
[tex]\[ 2(3x - 7) = 6x - 14 \][/tex]
Now, substitute back into the original expression:
[tex]\[ 4[x + (6x - 14)] = 4[x + 6x - 14] = 4[7x - 14] \][/tex]
Finally, distribute the 4:
[tex]\[ 4(7x - 14) = 28x - 56 \][/tex]
2. Now, compare the simplified left side to the right side [tex]\( 22x - 65 \)[/tex]:
[tex]\[ 28x - 56 = 22x - 65 \][/tex]
3. Next, let's look at the given list of equations and see which one matches [tex]\( 28x - 56 = 22x - 65 \)[/tex]:
Equation 1:
[tex]\[ 28x - 7 = 22x - 65 \][/tex]
To check if this is equivalent, we rearrange it:
[tex]\[ 28x - 22x - 7 = -65 \rightarrow 6x - 7 \neq -65 \][/tex]
This does not match the simplified equation [tex]\( 28x - 56 = 22x - 65 \)[/tex].
Equation 2:
[tex]\[ 28x - 56 = 22x - 65 \][/tex]
This equation exactly matches the simplified form! Therefore, it is equivalent to the original equation [tex]\( 4[x + 2(3x - 7)] = 22x - 65 \)[/tex].
Equation 3:
[tex]\[ 10x - 14 = 22x - 65 \][/tex]
Rearranging:
[tex]\[ 10x - 22x - 14 = -65 \rightarrow -12x - 14 = -65 \rightarrow -12x = -51 \rightarrow x = \frac{51}{12} \][/tex]
This does not match the simplified equation.
Equation 4:
[tex]\[ 16x - 28 = 22x - 65 \][/tex]
Rearranging:
[tex]\[ 16x - 22x - 28 = -65 \rightarrow -6x - 28 = -65 \rightarrow -6x = -37 \rightarrow x = \frac{37}{6} \][/tex]
This also does not match the simplified equation.
After carefully examining all the options, we find that Equation 2:
[tex]\[ 28x - 56 = 22x - 65 \][/tex]
is the one that is equivalent to the original equation.
Thus, the correct answer is:
[tex]\[ \boxed{2} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.