Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve the given problem step by step to determine which equation is equivalent to [tex]\( 4[x + 2(3x - 7)] = 22x - 65 \)[/tex].
1. First, simplify the left side of the equation [tex]\( 4[x + 2(3x - 7)] \)[/tex]:
[tex]\[ 4[x + 2(3x - 7)] \][/tex]
Start by simplifying inside the parenthesis:
[tex]\[ 3x - 7 \][/tex]
Then multiply by 2:
[tex]\[ 2(3x - 7) = 6x - 14 \][/tex]
Now, substitute back into the original expression:
[tex]\[ 4[x + (6x - 14)] = 4[x + 6x - 14] = 4[7x - 14] \][/tex]
Finally, distribute the 4:
[tex]\[ 4(7x - 14) = 28x - 56 \][/tex]
2. Now, compare the simplified left side to the right side [tex]\( 22x - 65 \)[/tex]:
[tex]\[ 28x - 56 = 22x - 65 \][/tex]
3. Next, let's look at the given list of equations and see which one matches [tex]\( 28x - 56 = 22x - 65 \)[/tex]:
Equation 1:
[tex]\[ 28x - 7 = 22x - 65 \][/tex]
To check if this is equivalent, we rearrange it:
[tex]\[ 28x - 22x - 7 = -65 \rightarrow 6x - 7 \neq -65 \][/tex]
This does not match the simplified equation [tex]\( 28x - 56 = 22x - 65 \)[/tex].
Equation 2:
[tex]\[ 28x - 56 = 22x - 65 \][/tex]
This equation exactly matches the simplified form! Therefore, it is equivalent to the original equation [tex]\( 4[x + 2(3x - 7)] = 22x - 65 \)[/tex].
Equation 3:
[tex]\[ 10x - 14 = 22x - 65 \][/tex]
Rearranging:
[tex]\[ 10x - 22x - 14 = -65 \rightarrow -12x - 14 = -65 \rightarrow -12x = -51 \rightarrow x = \frac{51}{12} \][/tex]
This does not match the simplified equation.
Equation 4:
[tex]\[ 16x - 28 = 22x - 65 \][/tex]
Rearranging:
[tex]\[ 16x - 22x - 28 = -65 \rightarrow -6x - 28 = -65 \rightarrow -6x = -37 \rightarrow x = \frac{37}{6} \][/tex]
This also does not match the simplified equation.
After carefully examining all the options, we find that Equation 2:
[tex]\[ 28x - 56 = 22x - 65 \][/tex]
is the one that is equivalent to the original equation.
Thus, the correct answer is:
[tex]\[ \boxed{2} \][/tex]
1. First, simplify the left side of the equation [tex]\( 4[x + 2(3x - 7)] \)[/tex]:
[tex]\[ 4[x + 2(3x - 7)] \][/tex]
Start by simplifying inside the parenthesis:
[tex]\[ 3x - 7 \][/tex]
Then multiply by 2:
[tex]\[ 2(3x - 7) = 6x - 14 \][/tex]
Now, substitute back into the original expression:
[tex]\[ 4[x + (6x - 14)] = 4[x + 6x - 14] = 4[7x - 14] \][/tex]
Finally, distribute the 4:
[tex]\[ 4(7x - 14) = 28x - 56 \][/tex]
2. Now, compare the simplified left side to the right side [tex]\( 22x - 65 \)[/tex]:
[tex]\[ 28x - 56 = 22x - 65 \][/tex]
3. Next, let's look at the given list of equations and see which one matches [tex]\( 28x - 56 = 22x - 65 \)[/tex]:
Equation 1:
[tex]\[ 28x - 7 = 22x - 65 \][/tex]
To check if this is equivalent, we rearrange it:
[tex]\[ 28x - 22x - 7 = -65 \rightarrow 6x - 7 \neq -65 \][/tex]
This does not match the simplified equation [tex]\( 28x - 56 = 22x - 65 \)[/tex].
Equation 2:
[tex]\[ 28x - 56 = 22x - 65 \][/tex]
This equation exactly matches the simplified form! Therefore, it is equivalent to the original equation [tex]\( 4[x + 2(3x - 7)] = 22x - 65 \)[/tex].
Equation 3:
[tex]\[ 10x - 14 = 22x - 65 \][/tex]
Rearranging:
[tex]\[ 10x - 22x - 14 = -65 \rightarrow -12x - 14 = -65 \rightarrow -12x = -51 \rightarrow x = \frac{51}{12} \][/tex]
This does not match the simplified equation.
Equation 4:
[tex]\[ 16x - 28 = 22x - 65 \][/tex]
Rearranging:
[tex]\[ 16x - 22x - 28 = -65 \rightarrow -6x - 28 = -65 \rightarrow -6x = -37 \rightarrow x = \frac{37}{6} \][/tex]
This also does not match the simplified equation.
After carefully examining all the options, we find that Equation 2:
[tex]\[ 28x - 56 = 22x - 65 \][/tex]
is the one that is equivalent to the original equation.
Thus, the correct answer is:
[tex]\[ \boxed{2} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.