Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

The equation [tex]\(4[x+2(3x-7)] = 22x - 65\)[/tex] was simplified to [tex]\(28x - 56 = 22x - 65\)[/tex].

What is the solution of the equation [tex]\(4[x+2(3x-7)] = 22x - 65\)[/tex]?

A. [tex]\(-\frac{3}{2}\)[/tex]
B. [tex]\(\frac{2}{3}\)[/tex]
C. [tex]\(-\frac{2}{3}\)[/tex]
D. [tex]\(\frac{3}{2}\)[/tex]

Sagot :

Sure, let's solve the equation step by step.

Step 1: Expand the equation inside the brackets

We start with the equation:
[tex]\[ 4[x + 2(3x - 7)] = 22x - 65 \][/tex]

First, simplify the expression inside the brackets:
[tex]\[ 2(3x - 7) \][/tex]

Distribute the 2:
[tex]\[ 2 \cdot 3x - 2 \cdot 7 = 6x - 14 \][/tex]

So, we get:
[tex]\[ x + 6x - 14 = 7x - 14 \][/tex]

Step 2: Substitute back and expand

Now, substituting this back into the original equation:
[tex]\[ 4[7x - 14] = 22x - 65 \][/tex]

Distribute the 4:
[tex]\[ 4 \cdot 7x - 4 \cdot 14 = 28x - 56 \][/tex]

So, the equation becomes:
[tex]\[ 28x - 56 = 22x - 65 \][/tex]

Step 3: Solve for [tex]\( x \)[/tex]

Isolate the variable [tex]\( x \)[/tex].

First, let's move all [tex]\( x \)[/tex]-terms to one side:
[tex]\[ 28x - 22x = -65 + 56 \][/tex]

Simplify:
[tex]\[ 6x = -9 \][/tex]

Now, solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{-9}{6} = -\frac{3}{2} \][/tex]

Therefore, the solution to the equation [tex]\( 4[x+2(3x-7)] = 22x - 65 \)[/tex] is [tex]\( x = -\frac{3}{2} \)[/tex].

So, the correct answer is:

[tex]\[ -\frac{3}{2} \][/tex]