Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which of the given points satisfy the system of inequalities, we need to check each point against the inequalities:
[tex]\[ \begin{array}{l} y \leq -2x + 6 \\ x > 1 \end{array} \][/tex]
Let's go through each point one by one:
### Point A: [tex]\((1, 4)\)[/tex]
1. Check [tex]\(x > 1\)[/tex]:
- [tex]\(x = 1\)[/tex]; since [tex]\(1 \leq 1\)[/tex], this point does not satisfy the inequality [tex]\(x > 1\)[/tex].
Since it fails the second inequality, point A does not satisfy the system of inequalities.
### Point B: [tex]\((2, 1)\)[/tex]
1. Check [tex]\(x > 1\)[/tex]:
- [tex]\(x = 2\)[/tex]; since [tex]\(2 > 1\)[/tex], this point satisfies the inequality [tex]\(x > 1\)[/tex].
2. Check [tex]\(y \leq -2x + 6\)[/tex]:
- Substitute [tex]\(x = 2\)[/tex] and [tex]\(y = 1\)[/tex]: [tex]\(1 \leq -2(2) + 6\)[/tex] which simplifies to [tex]\(1 \leq 2\)[/tex].
Since it satisfies both inequalities, point B does satisfy the system of inequalities.
### Point C: [tex]\((0, 6)\)[/tex]
1. Check [tex]\(x > 1\)[/tex]:
- [tex]\(x = 0\)[/tex]; since [tex]\(0 \leq 1\)[/tex], this point does not satisfy the inequality [tex]\(x > 1\)[/tex].
Since it fails the second inequality, point C does not satisfy the system of inequalities.
### Point D: [tex]\((2, 11)\)[/tex]
1. Check [tex]\(x > 1\)[/tex]:
- [tex]\(x = 2\)[/tex]; since [tex]\(2 > 1\)[/tex], this point satisfies the inequality [tex]\(x > 1\)[/tex].
2. Check [tex]\(y \leq -2x + 6\)[/tex]:
- Substitute [tex]\(x = 2\)[/tex] and [tex]\(y = 11\)[/tex]: [tex]\(11 \leq -2(2) + 6\)[/tex] which simplifies to [tex]\(11 \leq 2\)[/tex].
Since it fails the first inequality, point D does not satisfy the system of inequalities.
### Point E: [tex]\((5, -6)\)[/tex]
1. Check [tex]\(x > 1\)[/tex]:
- [tex]\(x = 5\)[/tex]; since [tex]\(5 > 1\)[/tex], this point satisfies the inequality [tex]\(x > 1\)[/tex].
2. Check [tex]\(y \leq -2x + 6\)[/tex]:
- Substitute [tex]\(x = 5\)[/tex] and [tex]\(y = -6\)[/tex]: [tex]\(-6 \leq -2(5) + 6\)[/tex] which simplifies to [tex]\(-6 \leq -4\)[/tex].
Since it satisfies both inequalities, point E does satisfy the system of inequalities.
### Conclusion
The points that satisfy the system of inequalities are:
- B. [tex]\((2, 1)\)[/tex]
- E. [tex]\((5, -6)\)[/tex]
Thus, the solutions to the system of inequalities are:
[tex]\[ \{(2, 1), (5, -6)\} \][/tex]
[tex]\[ \begin{array}{l} y \leq -2x + 6 \\ x > 1 \end{array} \][/tex]
Let's go through each point one by one:
### Point A: [tex]\((1, 4)\)[/tex]
1. Check [tex]\(x > 1\)[/tex]:
- [tex]\(x = 1\)[/tex]; since [tex]\(1 \leq 1\)[/tex], this point does not satisfy the inequality [tex]\(x > 1\)[/tex].
Since it fails the second inequality, point A does not satisfy the system of inequalities.
### Point B: [tex]\((2, 1)\)[/tex]
1. Check [tex]\(x > 1\)[/tex]:
- [tex]\(x = 2\)[/tex]; since [tex]\(2 > 1\)[/tex], this point satisfies the inequality [tex]\(x > 1\)[/tex].
2. Check [tex]\(y \leq -2x + 6\)[/tex]:
- Substitute [tex]\(x = 2\)[/tex] and [tex]\(y = 1\)[/tex]: [tex]\(1 \leq -2(2) + 6\)[/tex] which simplifies to [tex]\(1 \leq 2\)[/tex].
Since it satisfies both inequalities, point B does satisfy the system of inequalities.
### Point C: [tex]\((0, 6)\)[/tex]
1. Check [tex]\(x > 1\)[/tex]:
- [tex]\(x = 0\)[/tex]; since [tex]\(0 \leq 1\)[/tex], this point does not satisfy the inequality [tex]\(x > 1\)[/tex].
Since it fails the second inequality, point C does not satisfy the system of inequalities.
### Point D: [tex]\((2, 11)\)[/tex]
1. Check [tex]\(x > 1\)[/tex]:
- [tex]\(x = 2\)[/tex]; since [tex]\(2 > 1\)[/tex], this point satisfies the inequality [tex]\(x > 1\)[/tex].
2. Check [tex]\(y \leq -2x + 6\)[/tex]:
- Substitute [tex]\(x = 2\)[/tex] and [tex]\(y = 11\)[/tex]: [tex]\(11 \leq -2(2) + 6\)[/tex] which simplifies to [tex]\(11 \leq 2\)[/tex].
Since it fails the first inequality, point D does not satisfy the system of inequalities.
### Point E: [tex]\((5, -6)\)[/tex]
1. Check [tex]\(x > 1\)[/tex]:
- [tex]\(x = 5\)[/tex]; since [tex]\(5 > 1\)[/tex], this point satisfies the inequality [tex]\(x > 1\)[/tex].
2. Check [tex]\(y \leq -2x + 6\)[/tex]:
- Substitute [tex]\(x = 5\)[/tex] and [tex]\(y = -6\)[/tex]: [tex]\(-6 \leq -2(5) + 6\)[/tex] which simplifies to [tex]\(-6 \leq -4\)[/tex].
Since it satisfies both inequalities, point E does satisfy the system of inequalities.
### Conclusion
The points that satisfy the system of inequalities are:
- B. [tex]\((2, 1)\)[/tex]
- E. [tex]\((5, -6)\)[/tex]
Thus, the solutions to the system of inequalities are:
[tex]\[ \{(2, 1), (5, -6)\} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.