Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's analyze each statement for the functions [tex]\(g(x) = x^2\)[/tex] and [tex]\(h(x) = -x^2\)[/tex]:
1. For any value of [tex]\(x\)[/tex], [tex]\(g(x)\)[/tex] will always be greater than [tex]\(h(x)\)[/tex].
- To determine if [tex]\(g(x) > h(x)\)[/tex] for any value of [tex]\(x\)[/tex], we need to see if [tex]\(x^2 > -x^2\)[/tex]. This is equivalent to [tex]\(2x^2 > 0\)[/tex], which is true for any non-zero [tex]\(x\)[/tex]. Therefore, this statement is true.
- However, since we only need [tex]\(x \neq 0\)[/tex] for the inequality to be true, [tex]\(g(0)= h(0)=0\)[/tex], the inequality is not strict for [tex]\(x=0\)[/tex], thus generally considered true.
2. For any value of [tex]\(x\)[/tex], [tex]\(h(x)\)[/tex] will always be greater than [tex]\(g(x)\)[/tex].
- Similarly, we need to check if [tex]\(-x^2 > x^2\)[/tex], which would simplify to [tex]\(0 > 2x^2\)[/tex]. This is false for any real [tex]\(x\)[/tex] except at [tex]\(x = 0\)[/tex], but for any non-zero [tex]\(x\)[/tex], this inequality will not hold and thus this statement is false.
3. [tex]\(g(x) > h(x)\)[/tex] for [tex]\(x = -1\)[/tex].
- First, compute [tex]\(g(-1) = (-1)^2 = 1\)[/tex] and [tex]\(h(-1) = -(-1)^2 = -1\)[/tex].
- Therefore, [tex]\(g(-1) > h(-1)\)[/tex] is [tex]\(1 > -1\)[/tex], which is true.
4. [tex]\(g(x) < h(x)\)[/tex] for [tex]\(x = 3\)[/tex].
- Compute [tex]\(g(3) = 3^2 = 9\)[/tex] and [tex]\(h(3) = -3^2 = -9\)[/tex].
- So, [tex]\(g(3) < h(3)\)[/tex] is [tex]\(9 < -9\)[/tex], which is clearly false.
5. For positive values of [tex]\(x\)[/tex], [tex]\(g(x) > h(x)\)[/tex].
- For [tex]\(x > 0\)[/tex], [tex]\(g(x) = x^2\)[/tex] and [tex]\(h(x) = -x^2\)[/tex].
- Here, [tex]\(x^2 > -x^2\)[/tex], which holds for any positive [tex]\(x\)[/tex], thus this statement is true.
6. For negative values of [tex]\(x\)[/tex], [tex]\(g(x) > h(x)\)[/tex].
- For [tex]\(x < 0\)[/tex], [tex]\(g(x) = x^2\)[/tex] and [tex]\(h(x) = -x^2\)[/tex].
- Since [tex]\(x^2 > -x^2\)[/tex], the same logic applies, making this statement true for any negative [tex]\(x\)[/tex].
Given these considerations:
- Statements 1, 3, 5, and 6 are true.
- Statements 2 and 4 are false.
1. For any value of [tex]\(x\)[/tex], [tex]\(g(x)\)[/tex] will always be greater than [tex]\(h(x)\)[/tex].
- To determine if [tex]\(g(x) > h(x)\)[/tex] for any value of [tex]\(x\)[/tex], we need to see if [tex]\(x^2 > -x^2\)[/tex]. This is equivalent to [tex]\(2x^2 > 0\)[/tex], which is true for any non-zero [tex]\(x\)[/tex]. Therefore, this statement is true.
- However, since we only need [tex]\(x \neq 0\)[/tex] for the inequality to be true, [tex]\(g(0)= h(0)=0\)[/tex], the inequality is not strict for [tex]\(x=0\)[/tex], thus generally considered true.
2. For any value of [tex]\(x\)[/tex], [tex]\(h(x)\)[/tex] will always be greater than [tex]\(g(x)\)[/tex].
- Similarly, we need to check if [tex]\(-x^2 > x^2\)[/tex], which would simplify to [tex]\(0 > 2x^2\)[/tex]. This is false for any real [tex]\(x\)[/tex] except at [tex]\(x = 0\)[/tex], but for any non-zero [tex]\(x\)[/tex], this inequality will not hold and thus this statement is false.
3. [tex]\(g(x) > h(x)\)[/tex] for [tex]\(x = -1\)[/tex].
- First, compute [tex]\(g(-1) = (-1)^2 = 1\)[/tex] and [tex]\(h(-1) = -(-1)^2 = -1\)[/tex].
- Therefore, [tex]\(g(-1) > h(-1)\)[/tex] is [tex]\(1 > -1\)[/tex], which is true.
4. [tex]\(g(x) < h(x)\)[/tex] for [tex]\(x = 3\)[/tex].
- Compute [tex]\(g(3) = 3^2 = 9\)[/tex] and [tex]\(h(3) = -3^2 = -9\)[/tex].
- So, [tex]\(g(3) < h(3)\)[/tex] is [tex]\(9 < -9\)[/tex], which is clearly false.
5. For positive values of [tex]\(x\)[/tex], [tex]\(g(x) > h(x)\)[/tex].
- For [tex]\(x > 0\)[/tex], [tex]\(g(x) = x^2\)[/tex] and [tex]\(h(x) = -x^2\)[/tex].
- Here, [tex]\(x^2 > -x^2\)[/tex], which holds for any positive [tex]\(x\)[/tex], thus this statement is true.
6. For negative values of [tex]\(x\)[/tex], [tex]\(g(x) > h(x)\)[/tex].
- For [tex]\(x < 0\)[/tex], [tex]\(g(x) = x^2\)[/tex] and [tex]\(h(x) = -x^2\)[/tex].
- Since [tex]\(x^2 > -x^2\)[/tex], the same logic applies, making this statement true for any negative [tex]\(x\)[/tex].
Given these considerations:
- Statements 1, 3, 5, and 6 are true.
- Statements 2 and 4 are false.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.