Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To understand how the coefficients [tex]\( C \)[/tex], [tex]\( D \)[/tex], and [tex]\( E \)[/tex] are affected when the radius of a circle is decreased without changing the coordinates of the center point, let's start by analyzing the general equation of a circle in standard form and compare it with the given equation.
1. Standard Form of Circle Equation:
The equation of a circle with center [tex]\((a, b)\)[/tex] and radius [tex]\(r\)[/tex] is given by:
[tex]\[ (x - a)^2 + (y - b)^2 = r^2 \][/tex]
2. Expanding the Standard Form:
Let's expand [tex]\((x - a)^2 + (y - b)^2 = r^2\)[/tex]:
[tex]\[ x^2 - 2ax + a^2 + y^2 - 2by + b^2 = r^2 \][/tex]
Simplifying this, we get:
[tex]\[ x^2 + y^2 - 2ax - 2by + (a^2 + b^2 - r^2) = 0 \][/tex]
3. Comparing with Given Equation:
The expanded form [tex]\(x^2 + y^2 - 2ax - 2by + (a^2 + b^2 - r^2) = 0\)[/tex] looks similar to the given equation [tex]\(x^2 + y^2 + Cx + Dy + E = 0\)[/tex] where:
[tex]\[ C = -2a,\quad D = -2b,\quad \text{and} \quad E = a^2 + b^2 - r^2 \][/tex]
4. Effect of Changing the Radius:
- Coefficient [tex]\(C\)[/tex]: This coefficient depends on the [tex]\(x\)[/tex]-coordinate of the center [tex]\(a\)[/tex]. Since the center does not change, [tex]\(C\)[/tex] remains unchanged.
- Coefficient [tex]\(D\)[/tex]: Similarly to [tex]\(C\)[/tex], this coefficient depends on the [tex]\(y\)[/tex]-coordinate of the center [tex]\(b\)[/tex]. Since the center does not change, [tex]\(D\)[/tex] remains unchanged.
- Coefficient [tex]\(E\)[/tex]: This coefficient involves the radius [tex]\(r\)[/tex]. Specifically, [tex]\(E = a^2 + b^2 - r^2\)[/tex]. If the radius [tex]\(r\)[/tex] decreases, [tex]\(r^2\)[/tex] decreases, which in turn increases [tex]\(E\)[/tex].
Hence, the correct option that describes the changes to the coefficients is:
E. [tex]\(C\)[/tex] and [tex]\(D\)[/tex] are unchanged, but [tex]\(E\)[/tex] increases.
1. Standard Form of Circle Equation:
The equation of a circle with center [tex]\((a, b)\)[/tex] and radius [tex]\(r\)[/tex] is given by:
[tex]\[ (x - a)^2 + (y - b)^2 = r^2 \][/tex]
2. Expanding the Standard Form:
Let's expand [tex]\((x - a)^2 + (y - b)^2 = r^2\)[/tex]:
[tex]\[ x^2 - 2ax + a^2 + y^2 - 2by + b^2 = r^2 \][/tex]
Simplifying this, we get:
[tex]\[ x^2 + y^2 - 2ax - 2by + (a^2 + b^2 - r^2) = 0 \][/tex]
3. Comparing with Given Equation:
The expanded form [tex]\(x^2 + y^2 - 2ax - 2by + (a^2 + b^2 - r^2) = 0\)[/tex] looks similar to the given equation [tex]\(x^2 + y^2 + Cx + Dy + E = 0\)[/tex] where:
[tex]\[ C = -2a,\quad D = -2b,\quad \text{and} \quad E = a^2 + b^2 - r^2 \][/tex]
4. Effect of Changing the Radius:
- Coefficient [tex]\(C\)[/tex]: This coefficient depends on the [tex]\(x\)[/tex]-coordinate of the center [tex]\(a\)[/tex]. Since the center does not change, [tex]\(C\)[/tex] remains unchanged.
- Coefficient [tex]\(D\)[/tex]: Similarly to [tex]\(C\)[/tex], this coefficient depends on the [tex]\(y\)[/tex]-coordinate of the center [tex]\(b\)[/tex]. Since the center does not change, [tex]\(D\)[/tex] remains unchanged.
- Coefficient [tex]\(E\)[/tex]: This coefficient involves the radius [tex]\(r\)[/tex]. Specifically, [tex]\(E = a^2 + b^2 - r^2\)[/tex]. If the radius [tex]\(r\)[/tex] decreases, [tex]\(r^2\)[/tex] decreases, which in turn increases [tex]\(E\)[/tex].
Hence, the correct option that describes the changes to the coefficients is:
E. [tex]\(C\)[/tex] and [tex]\(D\)[/tex] are unchanged, but [tex]\(E\)[/tex] increases.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.