Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To cut the amplitude of the sine function [tex]\( f(x) = A \sin (Bx - C) + D \)[/tex] in half, we need to focus on the coefficient [tex]\( A \)[/tex], as it directly determines the amplitude of the function. The amplitude of a sine function [tex]\( f(x) \)[/tex] is given by the absolute value of [tex]\( A \)[/tex].
Let's outline the steps involved in modifying the equation to achieve the desired amplitude reduction:
1. Identify the initial amplitude:
The initial amplitude of the function is [tex]\( A \)[/tex].
2. Calculate the new amplitude:
To cut the amplitude in half, we simply divide the initial amplitude [tex]\( A \)[/tex] by 2.
[tex]\[ \text{New Amplitude} = \frac{A}{2} \][/tex]
3. Modify the equation:
With the new amplitude being [tex]\( \frac{A}{2} \)[/tex], we substitute this value into the original function in place of [tex]\( A \)[/tex]. Therefore, the modified equation becomes:
[tex]\[ f(x) = \left(\frac{A}{2}\right) \sin (Bx - C) + D \][/tex]
So, the variables in the initial equation that must be modified are specifically the amplitude [tex]\( A \)[/tex]. After the adjustment, the modified equation is:
[tex]\[ f(x) = \frac{A}{2} \sin (Bx - C) + D \][/tex]
This modified equation ensures that the amplitude of the sine function is now half of its original value.
Let's outline the steps involved in modifying the equation to achieve the desired amplitude reduction:
1. Identify the initial amplitude:
The initial amplitude of the function is [tex]\( A \)[/tex].
2. Calculate the new amplitude:
To cut the amplitude in half, we simply divide the initial amplitude [tex]\( A \)[/tex] by 2.
[tex]\[ \text{New Amplitude} = \frac{A}{2} \][/tex]
3. Modify the equation:
With the new amplitude being [tex]\( \frac{A}{2} \)[/tex], we substitute this value into the original function in place of [tex]\( A \)[/tex]. Therefore, the modified equation becomes:
[tex]\[ f(x) = \left(\frac{A}{2}\right) \sin (Bx - C) + D \][/tex]
So, the variables in the initial equation that must be modified are specifically the amplitude [tex]\( A \)[/tex]. After the adjustment, the modified equation is:
[tex]\[ f(x) = \frac{A}{2} \sin (Bx - C) + D \][/tex]
This modified equation ensures that the amplitude of the sine function is now half of its original value.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.