Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the discriminant of the quadratic equation [tex]\(0 = x^2 - 4x + 5\)[/tex] and what it means about the number of real solutions the equation has, we follow the steps below:
1. Identify the coefficients:
The quadratic equation is in the form [tex]\(ax^2 + bx + c = 0\)[/tex]. Comparing [tex]\(0 = x^2 - 4x + 5\)[/tex] with [tex]\(ax^2 + bx + c = 0\)[/tex], we get:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = -4\)[/tex]
- [tex]\(c = 5\)[/tex]
2. Calculate the discriminant:
The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex], we have:
[tex]\[ \Delta = (-4)^2 - 4 \cdot 1 \cdot 5 = 16 - 20 = -4 \][/tex]
So, the discriminant is [tex]\(-4\)[/tex].
3. Interpret the discriminant:
The value of the discriminant determines the number and nature of the solutions of the quadratic equation:
- If [tex]\(\Delta > 0\)[/tex], there are two distinct real solutions.
- If [tex]\(\Delta = 0\)[/tex], there is exactly one real solution.
- If [tex]\(\Delta < 0\)[/tex], there are no real solutions (the solutions are complex).
In this case, since the discriminant is [tex]\(\Delta = -4\)[/tex], which is less than zero, the quadratic equation has no real solutions. Instead, the solutions are complex numbers.
Thus, the correct interpretation is:
The discriminant is -4, so the equation has no real solutions.
1. Identify the coefficients:
The quadratic equation is in the form [tex]\(ax^2 + bx + c = 0\)[/tex]. Comparing [tex]\(0 = x^2 - 4x + 5\)[/tex] with [tex]\(ax^2 + bx + c = 0\)[/tex], we get:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = -4\)[/tex]
- [tex]\(c = 5\)[/tex]
2. Calculate the discriminant:
The discriminant [tex]\(\Delta\)[/tex] of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex], we have:
[tex]\[ \Delta = (-4)^2 - 4 \cdot 1 \cdot 5 = 16 - 20 = -4 \][/tex]
So, the discriminant is [tex]\(-4\)[/tex].
3. Interpret the discriminant:
The value of the discriminant determines the number and nature of the solutions of the quadratic equation:
- If [tex]\(\Delta > 0\)[/tex], there are two distinct real solutions.
- If [tex]\(\Delta = 0\)[/tex], there is exactly one real solution.
- If [tex]\(\Delta < 0\)[/tex], there are no real solutions (the solutions are complex).
In this case, since the discriminant is [tex]\(\Delta = -4\)[/tex], which is less than zero, the quadratic equation has no real solutions. Instead, the solutions are complex numbers.
Thus, the correct interpretation is:
The discriminant is -4, so the equation has no real solutions.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.