Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the margin of error for the population mean, we will follow these steps:
1. Identify the given information:
- Sample size, [tex]\( n = 35 \)[/tex]
- Population mean, [tex]\( \mu = 50 \)[/tex] days
- Population standard deviation, [tex]\( \sigma = 2 \)[/tex] days
- [tex]\(95\% \)[/tex] confidence level, which corresponds to a [tex]\( z \)[/tex] score of [tex]\( 1.96 \)[/tex]
2. Understand the formula for margin of error (ME):
[tex]\[ ME = \frac{z \cdot \sigma}{\sqrt{n}} \][/tex]
where:
- [tex]\( z \)[/tex] is the z-score associated with the confidence level,
- [tex]\( \sigma \)[/tex] is the population standard deviation,
- [tex]\( n \)[/tex] is the sample size.
3. Substitute the given values into the formula:
[tex]\[ ME = \frac{1.96 \cdot 2}{\sqrt{35}} \][/tex]
4. Calculate the margin of error:
- First, calculate the square root of [tex]\( n \)[/tex]:
[tex]\[ \sqrt{35} \approx 5.92 \][/tex]
- Then, divide the standard deviation by the square root of the sample size:
[tex]\[ \frac{2}{5.92} \approx 0.3385 \][/tex]
- Finally, multiply by the z-score:
[tex]\[ 1.96 \cdot 0.3385 \approx 0.6626 \][/tex]
Thus, the margin of error (ME) for the population mean is approximately [tex]\( 0.6626 \)[/tex].
Given the answer choices:
- [tex]\( 0.06 \)[/tex]
- [tex]\( 0.11 \)[/tex]
- [tex]\( 0.34 \)[/tex]
- [tex]\( 0.66 \)[/tex]
The correct answer is [tex]\( 0.66 \)[/tex].
1. Identify the given information:
- Sample size, [tex]\( n = 35 \)[/tex]
- Population mean, [tex]\( \mu = 50 \)[/tex] days
- Population standard deviation, [tex]\( \sigma = 2 \)[/tex] days
- [tex]\(95\% \)[/tex] confidence level, which corresponds to a [tex]\( z \)[/tex] score of [tex]\( 1.96 \)[/tex]
2. Understand the formula for margin of error (ME):
[tex]\[ ME = \frac{z \cdot \sigma}{\sqrt{n}} \][/tex]
where:
- [tex]\( z \)[/tex] is the z-score associated with the confidence level,
- [tex]\( \sigma \)[/tex] is the population standard deviation,
- [tex]\( n \)[/tex] is the sample size.
3. Substitute the given values into the formula:
[tex]\[ ME = \frac{1.96 \cdot 2}{\sqrt{35}} \][/tex]
4. Calculate the margin of error:
- First, calculate the square root of [tex]\( n \)[/tex]:
[tex]\[ \sqrt{35} \approx 5.92 \][/tex]
- Then, divide the standard deviation by the square root of the sample size:
[tex]\[ \frac{2}{5.92} \approx 0.3385 \][/tex]
- Finally, multiply by the z-score:
[tex]\[ 1.96 \cdot 0.3385 \approx 0.6626 \][/tex]
Thus, the margin of error (ME) for the population mean is approximately [tex]\( 0.6626 \)[/tex].
Given the answer choices:
- [tex]\( 0.06 \)[/tex]
- [tex]\( 0.11 \)[/tex]
- [tex]\( 0.34 \)[/tex]
- [tex]\( 0.66 \)[/tex]
The correct answer is [tex]\( 0.66 \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.