Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the [tex]\( x \)[/tex]-coordinate of point [tex]\( Q \)[/tex], let's use the section formula. Given that point [tex]\( R \)[/tex] divides the segment [tex]\( \overline{PQ} \)[/tex] in the ratio [tex]\( 1:3 \)[/tex], and we know the [tex]\( x \)[/tex]-coordinate of [tex]\( R \)[/tex] is -1, and the [tex]\( x \)[/tex]-coordinate of [tex]\( P \)[/tex] is -3, we are to find the [tex]\( x \)[/tex]-coordinate of [tex]\( Q \)[/tex].
The section formula for a point [tex]\( R \)[/tex] that divides the segment [tex]\( \overline{PQ} \)[/tex] in the ratio [tex]\( m:n \)[/tex] is given by:
[tex]\[ R_x = \frac{m \cdot Q_x + n \cdot P_x}{m + n} \][/tex]
In this problem:
- [tex]\( R_x = -1 \)[/tex]
- [tex]\( P_x = -3 \)[/tex]
- [tex]\( \frac{RQ}{PQ} = \frac{1}{3} \)[/tex] which gives [tex]\( m = 1 \)[/tex] and [tex]\( n = 3 \)[/tex]
Substituting the known values into the formula, we get:
[tex]\[ -1 = \frac{1 \cdot Q_x + 3 \cdot (-3)}{1 + 3} \][/tex]
First, simplify the equation on the right-hand side:
[tex]\[ -1 = \frac{Q_x - 9}{4} \][/tex]
Now, eliminate the fraction by multiplying both sides by 4:
[tex]\[ -1 \cdot 4 = Q_x - 9 \][/tex]
This gives:
[tex]\[ -4 = Q_x - 9 \][/tex]
To solve for [tex]\( Q_x \)[/tex], add 9 to both sides of the equation:
[tex]\[ -4 + 9 = Q_x \][/tex]
[tex]\[ Q_x = 5 \][/tex]
Thus, the [tex]\( x \)[/tex]-coordinate of [tex]\( Q \)[/tex] is [tex]\( 5 \)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{5} \][/tex]
The section formula for a point [tex]\( R \)[/tex] that divides the segment [tex]\( \overline{PQ} \)[/tex] in the ratio [tex]\( m:n \)[/tex] is given by:
[tex]\[ R_x = \frac{m \cdot Q_x + n \cdot P_x}{m + n} \][/tex]
In this problem:
- [tex]\( R_x = -1 \)[/tex]
- [tex]\( P_x = -3 \)[/tex]
- [tex]\( \frac{RQ}{PQ} = \frac{1}{3} \)[/tex] which gives [tex]\( m = 1 \)[/tex] and [tex]\( n = 3 \)[/tex]
Substituting the known values into the formula, we get:
[tex]\[ -1 = \frac{1 \cdot Q_x + 3 \cdot (-3)}{1 + 3} \][/tex]
First, simplify the equation on the right-hand side:
[tex]\[ -1 = \frac{Q_x - 9}{4} \][/tex]
Now, eliminate the fraction by multiplying both sides by 4:
[tex]\[ -1 \cdot 4 = Q_x - 9 \][/tex]
This gives:
[tex]\[ -4 = Q_x - 9 \][/tex]
To solve for [tex]\( Q_x \)[/tex], add 9 to both sides of the equation:
[tex]\[ -4 + 9 = Q_x \][/tex]
[tex]\[ Q_x = 5 \][/tex]
Thus, the [tex]\( x \)[/tex]-coordinate of [tex]\( Q \)[/tex] is [tex]\( 5 \)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{5} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.