Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which value is in the domain of the function [tex]\( f(x) \)[/tex], defined as:
[tex]\[ f(x) = \begin{cases} 2x + 5, & -6 < x \leq 0 \\ -2x + 3, & 0 < x \leq 4 \end{cases} \][/tex]
we need to evaluate each of the provided values and see if they fit within either interval of the piecewise function.
### Step-by-Step Analysis:
1. Consider [tex]\( x = -7 \)[/tex]:
- For the interval [tex]\( -6 < x \leq 0 \)[/tex]:
- [tex]\( -7 \)[/tex] is not greater than [tex]\(-6\)[/tex]. Thus, [tex]\( -7 \)[/tex] is not included in [tex]\( -6 < x \leq 0 \)[/tex].
- For the interval [tex]\( 0 < x \leq 4 \)[/tex]:
- [tex]\( -7 \)[/tex] is not greater than 0. Thus, [tex]\( -7 \)[/tex] is not included in [tex]\( 0 < x \leq 4 \)[/tex].
- Therefore, [tex]\( x = -7 \)[/tex] is not in the domain of [tex]\( f(x) \)[/tex].
2. Consider [tex]\( x = -6 \)[/tex]:
- For the interval [tex]\( -6 < x \leq 0 \)[/tex]:
- [tex]\( -6 \)[/tex] is not strictly greater than [tex]\(-6\)[/tex]. Since [tex]\( x \)[/tex] must be greater than [tex]\(-6\)[/tex], [tex]\( -6 \)[/tex] is not included in [tex]\( -6 < x \leq 0 \)[/tex].
- For the interval [tex]\( 0 < x \leq 4 \)[/tex]:
- [tex]\( -6 \)[/tex] is not greater than 0. Thus, [tex]\( -6 \)[/tex] is not included in [tex]\( 0 < x \leq 4 \)[/tex].
- Therefore, [tex]\( x = -6 \)[/tex] is not in the domain of [tex]\( f(x) \)[/tex].
3. Consider [tex]\( x = 4 \)[/tex]:
- For the interval [tex]\( -6 < x \leq 0 \)[/tex]:
- [tex]\( 4 \)[/tex] is greater than 0. Thus, [tex]\( 4 \)[/tex] is not included in [tex]\( -6 < x \leq 0 \)[/tex].
- For the interval [tex]\( 0 < x \leq 4 \)[/tex]:
- [tex]\( 4 \)[/tex] is less than or equal to [tex]\(4\)[/tex]. Thus, [tex]\( 4 \)[/tex] is included in [tex]\( 0 < x \leq 4 \)[/tex].
- Therefore, [tex]\( x = 4 \)[/tex] is in the domain of [tex]\( f(x) \)[/tex].
4. Consider [tex]\( x = 5 \)[/tex]:
- For the interval [tex]\( -6 < x \leq 0 \)[/tex]:
- [tex]\( 5 \)[/tex] is greater than 0. Thus, [tex]\( 5 \)[/tex] is not included in [tex]\( -6 < x \leq 0 \)[/tex].
- For the interval [tex]\( 0 < x \leq 4 \)[/tex]:
- [tex]\( 5 \)[/tex] is greater than [tex]\( 4 \)[/tex]. Thus, [tex]\( 5 \)[/tex] is not included in [tex]\( 0 < x \leq 4 \)[/tex].
- Therefore, [tex]\( x = 5 \)[/tex] is not in the domain of [tex]\( f(x) \)[/tex].
### Conclusion:
After checking each value, we find that the value [tex]\( x = 4 \)[/tex] is the only value that is in the domain of [tex]\( f(x) \)[/tex].
[tex]\[ f(x) = \begin{cases} 2x + 5, & -6 < x \leq 0 \\ -2x + 3, & 0 < x \leq 4 \end{cases} \][/tex]
we need to evaluate each of the provided values and see if they fit within either interval of the piecewise function.
### Step-by-Step Analysis:
1. Consider [tex]\( x = -7 \)[/tex]:
- For the interval [tex]\( -6 < x \leq 0 \)[/tex]:
- [tex]\( -7 \)[/tex] is not greater than [tex]\(-6\)[/tex]. Thus, [tex]\( -7 \)[/tex] is not included in [tex]\( -6 < x \leq 0 \)[/tex].
- For the interval [tex]\( 0 < x \leq 4 \)[/tex]:
- [tex]\( -7 \)[/tex] is not greater than 0. Thus, [tex]\( -7 \)[/tex] is not included in [tex]\( 0 < x \leq 4 \)[/tex].
- Therefore, [tex]\( x = -7 \)[/tex] is not in the domain of [tex]\( f(x) \)[/tex].
2. Consider [tex]\( x = -6 \)[/tex]:
- For the interval [tex]\( -6 < x \leq 0 \)[/tex]:
- [tex]\( -6 \)[/tex] is not strictly greater than [tex]\(-6\)[/tex]. Since [tex]\( x \)[/tex] must be greater than [tex]\(-6\)[/tex], [tex]\( -6 \)[/tex] is not included in [tex]\( -6 < x \leq 0 \)[/tex].
- For the interval [tex]\( 0 < x \leq 4 \)[/tex]:
- [tex]\( -6 \)[/tex] is not greater than 0. Thus, [tex]\( -6 \)[/tex] is not included in [tex]\( 0 < x \leq 4 \)[/tex].
- Therefore, [tex]\( x = -6 \)[/tex] is not in the domain of [tex]\( f(x) \)[/tex].
3. Consider [tex]\( x = 4 \)[/tex]:
- For the interval [tex]\( -6 < x \leq 0 \)[/tex]:
- [tex]\( 4 \)[/tex] is greater than 0. Thus, [tex]\( 4 \)[/tex] is not included in [tex]\( -6 < x \leq 0 \)[/tex].
- For the interval [tex]\( 0 < x \leq 4 \)[/tex]:
- [tex]\( 4 \)[/tex] is less than or equal to [tex]\(4\)[/tex]. Thus, [tex]\( 4 \)[/tex] is included in [tex]\( 0 < x \leq 4 \)[/tex].
- Therefore, [tex]\( x = 4 \)[/tex] is in the domain of [tex]\( f(x) \)[/tex].
4. Consider [tex]\( x = 5 \)[/tex]:
- For the interval [tex]\( -6 < x \leq 0 \)[/tex]:
- [tex]\( 5 \)[/tex] is greater than 0. Thus, [tex]\( 5 \)[/tex] is not included in [tex]\( -6 < x \leq 0 \)[/tex].
- For the interval [tex]\( 0 < x \leq 4 \)[/tex]:
- [tex]\( 5 \)[/tex] is greater than [tex]\( 4 \)[/tex]. Thus, [tex]\( 5 \)[/tex] is not included in [tex]\( 0 < x \leq 4 \)[/tex].
- Therefore, [tex]\( x = 5 \)[/tex] is not in the domain of [tex]\( f(x) \)[/tex].
### Conclusion:
After checking each value, we find that the value [tex]\( x = 4 \)[/tex] is the only value that is in the domain of [tex]\( f(x) \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.