Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

What is the product of [tex]\((a-5)\)[/tex] and [tex]\((a+3)\)[/tex]?

A. [tex]\(-15\)[/tex]
B. [tex]\(a^2 + 2a - 15\)[/tex]
C. [tex]\(a^2 - 2a - 15\)[/tex]

Sagot :

To find the product of [tex]\((a - 5)\)[/tex] and [tex]\((a + 3)\)[/tex], we can use the distributive property, also known as the FOIL (First, Outer, Inner, Last) method.

1. First: Multiply the first terms from each binomial:
[tex]\[ a \cdot a = a^2 \][/tex]

2. Outer: Multiply the outer terms from each binomial:
[tex]\[ a \cdot 3 = 3a \][/tex]

3. Inner: Multiply the inner terms from each binomial:
[tex]\[ -5 \cdot a = -5a \][/tex]

4. Last: Multiply the last terms from each binomial:
[tex]\[ -5 \cdot 3 = -15 \][/tex]

Next, we combine all these products:
[tex]\[ a^2 + 3a - 5a - 15 \][/tex]

Now, we simplify by combining the like terms:
[tex]\[ a^2 + (3a - 5a) - 15 \][/tex]
[tex]\[ a^2 - 2a - 15 \][/tex]

Therefore, the product of [tex]\((a - 5)\)[/tex] and [tex]\((a + 3)\)[/tex] is:
[tex]\[ \boxed{A^2 - 2a - 15} \][/tex]

Thus, the correct answer is C. [tex]\( A^2 - 2a - 15 \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.