Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
Step-by-step explanation:
It seems like your message got cut off. It looks like you are providing information about a system of inequalities involving \( x \) and \( y \):
1. \( 2x - y \leq 2 \)
2. \( x + 2y \leq 6 \)
These inequalities represent the shaded region in a coordinate plane where the solutions to both inequalities lie.
To find specific points that satisfy these inequalities:
For \( x + 2y \leq 6 \):
- When \( x = 0 \):
\[ 0 + 2y \leq 6 \]
\[ 2y \leq 6 \]
\[ y \leq 3 \]
So, the point \( (0, 3) \) is on the line \( x + 2y = 6 \) and is within the shaded region.
For \( 2x - y \leq 2 \):
- When \( x = 0 \):
\[ 2(0) - y \leq 2 \]
\[ -y \leq 2 \]
\[ y \geq -2 \]
So, the point \( (0, -2) \) is on the line \( 2x - y = 2 \) and is within the shaded region.
Therefore, the points \( (0, 3) \) and \( (0, -2) \) satisfy both inequalities and lie within the shaded region where \( 2x - y \leq 2 \) and \( x + 2y \leq 6 \).
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.