Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the equivalent expression for [tex]\( 4x^{\frac{1}{2}} \)[/tex], we need to understand and manipulate the given expression step by step.
1. Understanding the exponent [tex]\( \frac{1}{2} \)[/tex]:
- The term [tex]\( x^{\frac{1}{2}} \)[/tex] can be interpreted as the square root of [tex]\( x \)[/tex]. This is because, by definition, raising a number to the power of [tex]\( \frac{1}{2} \)[/tex] is the same as taking the square root of that number.
2. Rewriting the expression:
- Substitute the square root interpretation into the expression:
[tex]\[ x^{\frac{1}{2}} = \sqrt{x} \][/tex]
3. Multiplication by 4:
- The given expression is [tex]\( 4x^{\frac{1}{2}} \)[/tex]. By applying the square root substitution, we get:
[tex]\[ 4x^{\frac{1}{2}} = 4 \cdot \sqrt{x} \][/tex]
Thus, the expression [tex]\( 4 x^{\frac{1}{2}} \)[/tex] is equivalent to [tex]\( 4 \cdot \sqrt{x} \)[/tex].
Therefore, the final simplified form of the given expression is:
[tex]\[ 4 \sqrt{x} \][/tex]
1. Understanding the exponent [tex]\( \frac{1}{2} \)[/tex]:
- The term [tex]\( x^{\frac{1}{2}} \)[/tex] can be interpreted as the square root of [tex]\( x \)[/tex]. This is because, by definition, raising a number to the power of [tex]\( \frac{1}{2} \)[/tex] is the same as taking the square root of that number.
2. Rewriting the expression:
- Substitute the square root interpretation into the expression:
[tex]\[ x^{\frac{1}{2}} = \sqrt{x} \][/tex]
3. Multiplication by 4:
- The given expression is [tex]\( 4x^{\frac{1}{2}} \)[/tex]. By applying the square root substitution, we get:
[tex]\[ 4x^{\frac{1}{2}} = 4 \cdot \sqrt{x} \][/tex]
Thus, the expression [tex]\( 4 x^{\frac{1}{2}} \)[/tex] is equivalent to [tex]\( 4 \cdot \sqrt{x} \)[/tex].
Therefore, the final simplified form of the given expression is:
[tex]\[ 4 \sqrt{x} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.