At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly, let's go through this step-by-step to determine the coordinates after the transformation and assess the statements given.
1. First, we need to apply the transformation rule [tex]\( R_{0, 180^\circ} \)[/tex] which states that any point [tex]\((x, y)\)[/tex] is transformed to [tex]\((-x, -y)\)[/tex].
2. Let's transform each vertex of the triangle accordingly:
- For vertex [tex]\( L(2, 2) \)[/tex]:
[tex]\[ L' = (-2, -2) \][/tex]
- For vertex [tex]\( M(4, 4) \)[/tex]:
[tex]\[ M' = (-4, -4) \][/tex]
- For vertex [tex]\( N(1, 6) \)[/tex]:
[tex]\[ N' = (-1, -6) \][/tex]
3. Now, let's compare the transformed coordinates with the given statements:
- The rule for the transformation is [tex]\((x, y) \rightarrow (-x, -y)\)[/tex]: This is indeed the correct rule for a 180° rotation about the origin. Thus, this statement is true.
- The coordinates of [tex]\( L'\)[/tex] are [tex]\((-2, -2)\)[/tex]: According to our transformation, this statement is true.
- The coordinates of [tex]\( M'\)[/tex] are [tex]\((-4, 4)\)[/tex]: According to our transformation, this statement is false. The coordinates of [tex]\( M'\)[/tex] should be [tex]\((-4, -4)\)[/tex].
- The coordinates of [tex]\( N'\)[/tex] are [tex]\((6, -1)\)[/tex]: According to our transformation, this statement is false. The coordinates of [tex]\( N'\)[/tex] should be [tex]\((-1, -6)\)[/tex].
- The coordinates of [tex]\( N'\)[/tex] are [tex]\((-1, -6)\)[/tex]: According to our transformation, this statement is true.
4. Therefore, the three correct statements are:
- The rule for the transformation is [tex]\((x, y) \rightarrow (-x, -y)\)[/tex].
- The coordinates of [tex]\( L'\)[/tex] are [tex]\((-2, -2)\)[/tex].
- The coordinates of [tex]\( N'\)[/tex] are [tex]\((-1, -6)\)[/tex].
1. First, we need to apply the transformation rule [tex]\( R_{0, 180^\circ} \)[/tex] which states that any point [tex]\((x, y)\)[/tex] is transformed to [tex]\((-x, -y)\)[/tex].
2. Let's transform each vertex of the triangle accordingly:
- For vertex [tex]\( L(2, 2) \)[/tex]:
[tex]\[ L' = (-2, -2) \][/tex]
- For vertex [tex]\( M(4, 4) \)[/tex]:
[tex]\[ M' = (-4, -4) \][/tex]
- For vertex [tex]\( N(1, 6) \)[/tex]:
[tex]\[ N' = (-1, -6) \][/tex]
3. Now, let's compare the transformed coordinates with the given statements:
- The rule for the transformation is [tex]\((x, y) \rightarrow (-x, -y)\)[/tex]: This is indeed the correct rule for a 180° rotation about the origin. Thus, this statement is true.
- The coordinates of [tex]\( L'\)[/tex] are [tex]\((-2, -2)\)[/tex]: According to our transformation, this statement is true.
- The coordinates of [tex]\( M'\)[/tex] are [tex]\((-4, 4)\)[/tex]: According to our transformation, this statement is false. The coordinates of [tex]\( M'\)[/tex] should be [tex]\((-4, -4)\)[/tex].
- The coordinates of [tex]\( N'\)[/tex] are [tex]\((6, -1)\)[/tex]: According to our transformation, this statement is false. The coordinates of [tex]\( N'\)[/tex] should be [tex]\((-1, -6)\)[/tex].
- The coordinates of [tex]\( N'\)[/tex] are [tex]\((-1, -6)\)[/tex]: According to our transformation, this statement is true.
4. Therefore, the three correct statements are:
- The rule for the transformation is [tex]\((x, y) \rightarrow (-x, -y)\)[/tex].
- The coordinates of [tex]\( L'\)[/tex] are [tex]\((-2, -2)\)[/tex].
- The coordinates of [tex]\( N'\)[/tex] are [tex]\((-1, -6)\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.