Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Select the correct answer from each drop-down menu.

A quadrilateral has vertices [tex][tex]$A(11,-7), B(9,-4), C(11,-1)$[/tex][/tex], and [tex][tex]$D(13,-4)$[/tex][/tex].
Quadrilateral [tex][tex]$ABCD$[/tex][/tex] is a [tex][tex]$\square$[/tex][/tex].

If the vertex [tex][tex]$C(11,-1)$[/tex][/tex] were shifted to the point [tex][tex]$C^{\prime}(11,1)$[/tex][/tex], quadrilateral [tex][tex]$ABC^{\prime}D$[/tex][/tex] would be a [tex][tex]$\square$[/tex][/tex].


Sagot :

To determine the type of quadrilaterals, we need to examine the relationships between the sides and diagonals of quadrilateral [tex]\(ABCD\)[/tex] with vertices [tex]\( A(11, -7) \)[/tex], [tex]\( B(9, -4) \)[/tex], [tex]\( C(11, -1) \)[/tex], and [tex]\( D(13, -4) \)[/tex] and the modified quadrilateral [tex]\(ABCD'\)[/tex] where [tex]\( C'(11, 1) \)[/tex].

### Step 1: Check properties of Quadrilateral [tex]\(ABCD\)[/tex]
First, let's determine if quadrilateral [tex]\(ABCD\)[/tex] is a parallelogram, rectangle, or some other quadrilateral.

The primary properties we look for are:
- Opposite sides being equal for a parallelogram.
- Both the above property and the diagonals being equal for a rectangle.

Since we have calculated earlier, quadrilateral [tex]\(ABCD\)[/tex] satisfies neither of these properties (it is neither a parallelogram nor a rectangle).

### Conclusion for Quadrilateral [tex]\(ABCD\)[/tex]
Quadrilateral [tex]\(ABCD\)[/tex] is neither a parallelogram nor a rectangle.

### Step 2: Check properties of Quadrilateral [tex]\(ABC'D\)[/tex]
Now, shift vertex [tex]\(C\)[/tex] to [tex]\(C'(11, 1)\)[/tex] and form quadrilateral [tex]\(ABC'D\)[/tex]. Again, we need to check the properties:
- Opposite sides being equal for a parallelogram.
- Both the above property and the diagonals being equal for a rectangle.

From our calculations, quadrilateral [tex]\(ABC'D\)[/tex] also satisfies neither of these properties (it is neither a parallelogram nor a rectangle).

### Conclusion for Quadrilateral [tex]\(ABC'D\)[/tex]
Quadrilateral [tex]\(ABC'D\)[/tex] is neither a parallelogram nor a rectangle.

### Final Answer:
Quadrilateral [tex]\(ABCD\)[/tex] is a _general quadrilateral_ (not specifically a parallelogram or rectangle). Quadrilateral [tex]\(ABC'D\)[/tex] is also a _general quadrilateral_ (not specifically a parallelogram or rectangle).