Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's go through the process step-by-step to answer the question:
1. Convert the general form to standard form:
The given equation of the circle is [tex]\(x^2 + y^2 + 42x + 38y - 47 = 0\)[/tex].
To convert to the standard form (which is [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex]), we complete the square for the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms.
- For the [tex]\(x\)[/tex] terms: [tex]\(x^2 + 42x\)[/tex]:
[tex]\[ x^2 + 42x = (x + 21)^2 - 441 \][/tex]
- For the [tex]\(y\)[/tex] terms: [tex]\(y^2 + 38y\)[/tex]:
[tex]\[ y^2 + 38y = (y + 19)^2 - 361 \][/tex]
Substitute back into the equation:
[tex]\[ (x + 21)^2 - 441 + (y + 19)^2 - 361 - 47 = 0 \][/tex]
Combine the constants:
[tex]\[ (x + 21)^2 + (y + 19)^2 = 849 \][/tex]
Therefore, the equation in standard form is:
[tex]\[ (x + 21)^2 + (y + 19)^2 = 849 \][/tex]
2. Identify the center of the circle:
From the standard form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], we can see that the center [tex]\((h, k)\)[/tex] of the circle is [tex]\(( -21, -19)\)[/tex].
3. Determine the radius:
The right-hand side of the standard form equation is [tex]\(r^2\)[/tex].
[tex]\[ r^2 = 849 \implies r = \sqrt{849} \approx 29.13760456866693 \][/tex]
4. General form of another circle with the same radius:
The general form of a circle's equation is [tex]\(x^2 + y^2 + Dx + Ey + F = 0\)[/tex]. To have the same radius [tex]\(\sqrt{849}\)[/tex], we use the same constant on the right side:
One possible general form with the same center values (but different [tex]\((D, E)\)[/tex]) could be:
[tex]\[ x^2 + y^2 + 42x + 38y + C \][/tex]
So, putting it all together:
1. The equation of the circle in standard form is [tex]\(\boxed{(x + 21)^2 + (y + 19)^2 = 849}\)[/tex].
2. The center of the circle is at the point [tex]\(\boxed{(-21, -19)}\)[/tex].
3. Its radius is [tex]\(\boxed{29.13760456866693}\)[/tex] units.
4. The general form of the equation of a circle that has the same radius as the above circle is [tex]\(\boxed{x^2 + y^2 + 42x + 38y + C}\)[/tex].
1. Convert the general form to standard form:
The given equation of the circle is [tex]\(x^2 + y^2 + 42x + 38y - 47 = 0\)[/tex].
To convert to the standard form (which is [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex]), we complete the square for the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms.
- For the [tex]\(x\)[/tex] terms: [tex]\(x^2 + 42x\)[/tex]:
[tex]\[ x^2 + 42x = (x + 21)^2 - 441 \][/tex]
- For the [tex]\(y\)[/tex] terms: [tex]\(y^2 + 38y\)[/tex]:
[tex]\[ y^2 + 38y = (y + 19)^2 - 361 \][/tex]
Substitute back into the equation:
[tex]\[ (x + 21)^2 - 441 + (y + 19)^2 - 361 - 47 = 0 \][/tex]
Combine the constants:
[tex]\[ (x + 21)^2 + (y + 19)^2 = 849 \][/tex]
Therefore, the equation in standard form is:
[tex]\[ (x + 21)^2 + (y + 19)^2 = 849 \][/tex]
2. Identify the center of the circle:
From the standard form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], we can see that the center [tex]\((h, k)\)[/tex] of the circle is [tex]\(( -21, -19)\)[/tex].
3. Determine the radius:
The right-hand side of the standard form equation is [tex]\(r^2\)[/tex].
[tex]\[ r^2 = 849 \implies r = \sqrt{849} \approx 29.13760456866693 \][/tex]
4. General form of another circle with the same radius:
The general form of a circle's equation is [tex]\(x^2 + y^2 + Dx + Ey + F = 0\)[/tex]. To have the same radius [tex]\(\sqrt{849}\)[/tex], we use the same constant on the right side:
One possible general form with the same center values (but different [tex]\((D, E)\)[/tex]) could be:
[tex]\[ x^2 + y^2 + 42x + 38y + C \][/tex]
So, putting it all together:
1. The equation of the circle in standard form is [tex]\(\boxed{(x + 21)^2 + (y + 19)^2 = 849}\)[/tex].
2. The center of the circle is at the point [tex]\(\boxed{(-21, -19)}\)[/tex].
3. Its radius is [tex]\(\boxed{29.13760456866693}\)[/tex] units.
4. The general form of the equation of a circle that has the same radius as the above circle is [tex]\(\boxed{x^2 + y^2 + 42x + 38y + C}\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.