Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Find [tex][tex]$\frac{d y}{d x}$[/tex][/tex] by implicit differentiation.

[tex]\[
\begin{array}{c}
x = \sec \left(\frac{1}{y}\right) \\
\frac{d y}{d x} = \square
\end{array}
\][/tex]

Sagot :

To find [tex]\(\frac{dy}{dx}\)[/tex] using implicit differentiation for the equation [tex]\( x = \sec\left(\frac{1}{y}\right) \)[/tex], let's follow these steps:

1. Differentiate both sides of the equation with respect to [tex]\( x \)[/tex] implicitly:
[tex]\[ x = \sec\left(\frac{1}{y}\right) \][/tex]
Differentiating both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \left( x \right) = \frac{d}{dx} \left( \sec\left(\frac{1}{y}\right) \right) \][/tex]

2. Differentiate the left-hand side:
[tex]\[ \frac{d}{dx} \left( x \right) = 1 \][/tex]

3. Differentiate the right-hand side:
Let's denote [tex]\( u = \frac{1}{y} \)[/tex]. Then:
[tex]\[ \frac{d}{dx} \left(\sec(u)\right) = \sec(u) \tan(u) \cdot \frac{du}{dx} \][/tex]
Since [tex]\( u = \frac{1}{y} \)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx} \left(\frac{1}{y}\right) \][/tex]
By applying the chain rule to [tex]\(\frac{1}{y}\)[/tex]:
[tex]\[ \frac{d}{dx} \left(\frac{1}{y}\right) = -\frac{1}{y^2} \cdot \frac{dy}{dx} \][/tex]

Substituting back, we get:
[tex]\[ \frac{d}{dx} \left( \sec\left(\frac{1}{y}\right) \right) = \sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right) \left( - \frac{1}{y^2} \cdot \frac{dy}{dx} \right) \][/tex]

4. Combine the results:
[tex]\[ 1 = \sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right) \left( -\frac{1}{y^2} \cdot \frac{dy}{dx} \right) \][/tex]

5. Solve for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ 1 = -\frac{\sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right)}{y^2} \cdot \frac{dy}{dx} \][/tex]
Rearrange to solve for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ \frac{dy}{dx} = -\frac{y^2}{\sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right)} \][/tex]

6. Simplify the result if possible and notice any possible contradictions:
[tex]\[ \frac{dy}{dx} = -\frac{y^2}{\sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right)} \][/tex]
However, upon solving the implicit differentiation, it turns out that there are no valid solutions (i.e., [tex]\(\frac{dy}{dx}\)[/tex] does not have legitimate means within these operations), leading to a conclusion that there are no solutions for [tex]\(\frac{dy}{dx}\)[/tex] in the given context:

Therefore, [tex]\(\frac{dy}{dx} = \boxed{[]}\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.