Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find [tex]\(\frac{dy}{dx}\)[/tex] using implicit differentiation for the equation [tex]\( x = \sec\left(\frac{1}{y}\right) \)[/tex], let's follow these steps:
1. Differentiate both sides of the equation with respect to [tex]\( x \)[/tex] implicitly:
[tex]\[ x = \sec\left(\frac{1}{y}\right) \][/tex]
Differentiating both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \left( x \right) = \frac{d}{dx} \left( \sec\left(\frac{1}{y}\right) \right) \][/tex]
2. Differentiate the left-hand side:
[tex]\[ \frac{d}{dx} \left( x \right) = 1 \][/tex]
3. Differentiate the right-hand side:
Let's denote [tex]\( u = \frac{1}{y} \)[/tex]. Then:
[tex]\[ \frac{d}{dx} \left(\sec(u)\right) = \sec(u) \tan(u) \cdot \frac{du}{dx} \][/tex]
Since [tex]\( u = \frac{1}{y} \)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx} \left(\frac{1}{y}\right) \][/tex]
By applying the chain rule to [tex]\(\frac{1}{y}\)[/tex]:
[tex]\[ \frac{d}{dx} \left(\frac{1}{y}\right) = -\frac{1}{y^2} \cdot \frac{dy}{dx} \][/tex]
Substituting back, we get:
[tex]\[ \frac{d}{dx} \left( \sec\left(\frac{1}{y}\right) \right) = \sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right) \left( - \frac{1}{y^2} \cdot \frac{dy}{dx} \right) \][/tex]
4. Combine the results:
[tex]\[ 1 = \sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right) \left( -\frac{1}{y^2} \cdot \frac{dy}{dx} \right) \][/tex]
5. Solve for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ 1 = -\frac{\sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right)}{y^2} \cdot \frac{dy}{dx} \][/tex]
Rearrange to solve for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ \frac{dy}{dx} = -\frac{y^2}{\sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right)} \][/tex]
6. Simplify the result if possible and notice any possible contradictions:
[tex]\[ \frac{dy}{dx} = -\frac{y^2}{\sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right)} \][/tex]
However, upon solving the implicit differentiation, it turns out that there are no valid solutions (i.e., [tex]\(\frac{dy}{dx}\)[/tex] does not have legitimate means within these operations), leading to a conclusion that there are no solutions for [tex]\(\frac{dy}{dx}\)[/tex] in the given context:
Therefore, [tex]\(\frac{dy}{dx} = \boxed{[]}\)[/tex].
1. Differentiate both sides of the equation with respect to [tex]\( x \)[/tex] implicitly:
[tex]\[ x = \sec\left(\frac{1}{y}\right) \][/tex]
Differentiating both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \left( x \right) = \frac{d}{dx} \left( \sec\left(\frac{1}{y}\right) \right) \][/tex]
2. Differentiate the left-hand side:
[tex]\[ \frac{d}{dx} \left( x \right) = 1 \][/tex]
3. Differentiate the right-hand side:
Let's denote [tex]\( u = \frac{1}{y} \)[/tex]. Then:
[tex]\[ \frac{d}{dx} \left(\sec(u)\right) = \sec(u) \tan(u) \cdot \frac{du}{dx} \][/tex]
Since [tex]\( u = \frac{1}{y} \)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx} \left(\frac{1}{y}\right) \][/tex]
By applying the chain rule to [tex]\(\frac{1}{y}\)[/tex]:
[tex]\[ \frac{d}{dx} \left(\frac{1}{y}\right) = -\frac{1}{y^2} \cdot \frac{dy}{dx} \][/tex]
Substituting back, we get:
[tex]\[ \frac{d}{dx} \left( \sec\left(\frac{1}{y}\right) \right) = \sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right) \left( - \frac{1}{y^2} \cdot \frac{dy}{dx} \right) \][/tex]
4. Combine the results:
[tex]\[ 1 = \sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right) \left( -\frac{1}{y^2} \cdot \frac{dy}{dx} \right) \][/tex]
5. Solve for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ 1 = -\frac{\sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right)}{y^2} \cdot \frac{dy}{dx} \][/tex]
Rearrange to solve for [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ \frac{dy}{dx} = -\frac{y^2}{\sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right)} \][/tex]
6. Simplify the result if possible and notice any possible contradictions:
[tex]\[ \frac{dy}{dx} = -\frac{y^2}{\sec\left(\frac{1}{y}\right) \tan\left(\frac{1}{y}\right)} \][/tex]
However, upon solving the implicit differentiation, it turns out that there are no valid solutions (i.e., [tex]\(\frac{dy}{dx}\)[/tex] does not have legitimate means within these operations), leading to a conclusion that there are no solutions for [tex]\(\frac{dy}{dx}\)[/tex] in the given context:
Therefore, [tex]\(\frac{dy}{dx} = \boxed{[]}\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.