Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Select the correct answer.

Consider this equation:
[tex]\[
\cos (\theta)=-\frac{2 \sqrt{5}}{5}
\][/tex]

If [tex]\(\theta\)[/tex] is an angle in quadrant II, what is the value of [tex]\(\sin (\theta)\)[/tex]?

A. [tex]\(\frac{1}{2}\)[/tex]

B. [tex]\(-\frac{1}{2}\)[/tex]

C. [tex]\(\frac{\sqrt{5}}{5}\)[/tex]

D. [tex]\(-\frac{\sqrt{5}}{5}\)[/tex]


Sagot :

To find the value of [tex]\(\sin(\theta)\)[/tex] given that [tex]\(\cos(\theta) = -\frac{2\sqrt{5}}{5}\)[/tex] and [tex]\(\theta\)[/tex] is an angle in quadrant II, we can use the Pythagorean identity:

[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]

Step-by-step solution:

1. Substitute the value of [tex]\(\cos(\theta)\)[/tex] into the Pythagorean identity:

[tex]\[ \sin^2(\theta) + \left(-\frac{2\sqrt{5}}{5}\right)^2 = 1 \][/tex]

2. Square the cosine value:

[tex]\[ \left(-\frac{2\sqrt{5}}{5}\right)^2 = \left(\frac{-2\sqrt{5}}{5}\right) \times \left(\frac{-2\sqrt{5}}{5}\right) = \frac{4 \times 5}{25} = \frac{20}{25} = \frac{4}{5} \][/tex]

3. Substitute [tex]\(\cos^2(\theta)\)[/tex] into the Pythagorean identity:

[tex]\[ \sin^2(\theta) + \frac{4}{5} = 1 \][/tex]

4. Solve for [tex]\(\sin^2(\theta)\)[/tex]:

[tex]\[ \sin^2(\theta) = 1 - \frac{4}{5} \][/tex]

[tex]\[ \sin^2(\theta) = \frac{5}{5} - \frac{4}{5} \][/tex]

[tex]\[ \sin^2(\theta) = \frac{1}{5} \][/tex]

5. Take the square root of both sides to find [tex]\(\sin(\theta)\)[/tex]:

[tex]\[ \sin(\theta) = \pm \sqrt{\frac{1}{5}} = \pm \frac{\sqrt{5}}{5} \][/tex]

6. Determine the correct sign for [tex]\(\sin(\theta)\)[/tex]:

Since [tex]\(\theta\)[/tex] is in quadrant II, where sine is positive, we choose the positive value:

[tex]\[ \sin(\theta) = \frac{\sqrt{5}}{5} \][/tex]

Thus, the correct answer is [tex]\(C\)[/tex]:

C. [tex]\(\frac{\sqrt{5}}{5}\)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.