Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
We need to find the corresponding point on the unit circle for the given radian measure [tex]\(\theta = \frac{7\pi}{6}\)[/tex].
Let’s go through the steps:
1. Evaluate the angle:
[tex]\(\theta = \frac{7\pi}{6}\)[/tex] is in the third quadrant because [tex]\(\frac{7\pi}{6}\)[/tex] radians is just slightly more than [tex]\(\pi\)[/tex] (which is [tex]\(\frac{6\pi}{6}\)[/tex]).
2. Determine the cosine and sine values:
To find the coordinates of the corresponding point on the unit circle, we use the cosine and sine functions. For an angle [tex]\(\theta\)[/tex]:
[tex]\[ x = \cos(\theta) \][/tex]
[tex]\[ y = \sin(\theta) \][/tex]
3. Identify the exact values based on the unit circle:
Since [tex]\(\theta = \frac{7\pi}{6}\)[/tex] is in the third quadrant, both sine and cosine values will be negative. For an angle of [tex]\(\frac{\pi}{6}\)[/tex], the reference angle of [tex]\(\frac{7\pi}{6} - \pi = \frac{\pi}{6}\)[/tex], the values of cosine and sine are:
[tex]\[ \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \][/tex]
[tex]\[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \][/tex]
In the third quadrant, these values become negative:
[tex]\[ \cos\left(\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2} \][/tex]
[tex]\[ \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2} \][/tex]
4. Identify the corresponding point:
Therefore, the point on the unit circle corresponding to [tex]\(\theta = \frac{7\pi}{6}\)[/tex] is:
[tex]\[ \left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right) \][/tex]
5. Match it with the given choices:
A. [tex]\(\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\)[/tex]
B. [tex]\(\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)\)[/tex]
C. [tex]\(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\)[/tex]
D. [tex]\(\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)\)[/tex]
The correct answer is:
D. [tex]\(\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)\)[/tex]
Let’s go through the steps:
1. Evaluate the angle:
[tex]\(\theta = \frac{7\pi}{6}\)[/tex] is in the third quadrant because [tex]\(\frac{7\pi}{6}\)[/tex] radians is just slightly more than [tex]\(\pi\)[/tex] (which is [tex]\(\frac{6\pi}{6}\)[/tex]).
2. Determine the cosine and sine values:
To find the coordinates of the corresponding point on the unit circle, we use the cosine and sine functions. For an angle [tex]\(\theta\)[/tex]:
[tex]\[ x = \cos(\theta) \][/tex]
[tex]\[ y = \sin(\theta) \][/tex]
3. Identify the exact values based on the unit circle:
Since [tex]\(\theta = \frac{7\pi}{6}\)[/tex] is in the third quadrant, both sine and cosine values will be negative. For an angle of [tex]\(\frac{\pi}{6}\)[/tex], the reference angle of [tex]\(\frac{7\pi}{6} - \pi = \frac{\pi}{6}\)[/tex], the values of cosine and sine are:
[tex]\[ \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \][/tex]
[tex]\[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \][/tex]
In the third quadrant, these values become negative:
[tex]\[ \cos\left(\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2} \][/tex]
[tex]\[ \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2} \][/tex]
4. Identify the corresponding point:
Therefore, the point on the unit circle corresponding to [tex]\(\theta = \frac{7\pi}{6}\)[/tex] is:
[tex]\[ \left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right) \][/tex]
5. Match it with the given choices:
A. [tex]\(\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\)[/tex]
B. [tex]\(\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)\)[/tex]
C. [tex]\(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\)[/tex]
D. [tex]\(\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)\)[/tex]
The correct answer is:
D. [tex]\(\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)\)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.