Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the correct transformation of a pentagon according to the rule [tex]\( R_{0,180^{\circ}} \)[/tex], we need to understand what this rule represents.
The rule [tex]\( R_{0,180^{\circ}} \)[/tex] means we are rotating the point around the origin by 180 degrees. When you rotate a point [tex]\((x, y)\)[/tex] by 180 degrees around the origin, both the x-coordinate and the y-coordinate change signs. Specifically, the point [tex]\((x, y)\)[/tex] will move to [tex]\((-x, -y)\)[/tex].
Given the options:
1. [tex]\((x, y) \rightarrow (-x, -y)\)[/tex]
2. [tex]\((x, y) \rightarrow (-y, -x)\)[/tex]
3. [tex]\((x, y) \rightarrow (x, -y)\)[/tex]
4. [tex]\((x, y) \rightarrow (-x, y)\)[/tex]
By definition of the 180-degree rotation about the origin:
- Option 1: [tex]\((x, y) \rightarrow (-x, -y)\)[/tex] depicts the transformation accurately. Both coordinates change their signs, which is what happens during a 180-degree rotation around the origin.
- Option 2: [tex]\((x, y) \rightarrow (-y, -x)\)[/tex] does not correctly represent a 180-degree rotation, as the coordinates are swapped and their signs are changed.
- Option 3: [tex]\((x, y) \rightarrow (x, -y)\)[/tex] only changes the sign of the y-coordinate, which represents a reflection over the x-axis rather than a rotation.
- Option 4: [tex]\((x, y) \rightarrow (-x, y)\)[/tex] only changes the sign of the x-coordinate, which represents a reflection over the y-axis rather than a rotation.
Thus, the correct transformation according to [tex]\( R_{0,180^{\circ}} \)[/tex] is:
[tex]\[ (x, y) \rightarrow (-x, -y) \][/tex]
Therefore, the answer is:
[tex]\((x, y) \rightarrow (-x, -y)\)[/tex]
The rule [tex]\( R_{0,180^{\circ}} \)[/tex] means we are rotating the point around the origin by 180 degrees. When you rotate a point [tex]\((x, y)\)[/tex] by 180 degrees around the origin, both the x-coordinate and the y-coordinate change signs. Specifically, the point [tex]\((x, y)\)[/tex] will move to [tex]\((-x, -y)\)[/tex].
Given the options:
1. [tex]\((x, y) \rightarrow (-x, -y)\)[/tex]
2. [tex]\((x, y) \rightarrow (-y, -x)\)[/tex]
3. [tex]\((x, y) \rightarrow (x, -y)\)[/tex]
4. [tex]\((x, y) \rightarrow (-x, y)\)[/tex]
By definition of the 180-degree rotation about the origin:
- Option 1: [tex]\((x, y) \rightarrow (-x, -y)\)[/tex] depicts the transformation accurately. Both coordinates change their signs, which is what happens during a 180-degree rotation around the origin.
- Option 2: [tex]\((x, y) \rightarrow (-y, -x)\)[/tex] does not correctly represent a 180-degree rotation, as the coordinates are swapped and their signs are changed.
- Option 3: [tex]\((x, y) \rightarrow (x, -y)\)[/tex] only changes the sign of the y-coordinate, which represents a reflection over the x-axis rather than a rotation.
- Option 4: [tex]\((x, y) \rightarrow (-x, y)\)[/tex] only changes the sign of the x-coordinate, which represents a reflection over the y-axis rather than a rotation.
Thus, the correct transformation according to [tex]\( R_{0,180^{\circ}} \)[/tex] is:
[tex]\[ (x, y) \rightarrow (-x, -y) \][/tex]
Therefore, the answer is:
[tex]\((x, y) \rightarrow (-x, -y)\)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.