Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the pH of a 0.415 M solution of disodium citrate (Na[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_6\)[/tex]O[tex]\(_7\)[/tex]), we can utilize the properties of citric acid (C[tex]\(_6\)[/tex]H[tex]\(_8\)[/tex]O[tex]\(_7\)[/tex]) and its dissociation constants. Citric acid has three dissociation constants, represented as [tex]\( K_{a1} \)[/tex], [tex]\( K_{a2} \)[/tex], and [tex]\( K_{a3} \)[/tex].
Given:
[tex]\( K_{a1} = 7.44 \times 10^{-4} \)[/tex]
[tex]\( K_{a2} = 1.73 \times 10^{-5} \)[/tex]
[tex]\( K_{a3} = 4.02 \times 10^{-7} \)[/tex]
Concentration of disodium citrate, [tex]\( [ \text{Na}_2\text{C}_6\text{H}_6\text{O}_7 ] = 0.415 \, M \)[/tex]
### Step-by-Step Solution:
1. Identify the Predominant Species:
Disodium citrate (Na[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_6\)[/tex]O[tex]\(_7\)[/tex]) will dissociate in water, primarily forming H[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_5\)[/tex]O[tex]\(_7^-\)[/tex] ions. The most significant [tex]$\text{H}^+$[/tex] ion contribution will come from the first dissociation constant ([tex]\( K_{a1} \)[/tex]).
2. Approximation of Dominant Equilibrium:
For this predominant species H[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_5\)[/tex]O[tex]\(_7^-\)[/tex], we can use the approximation for the dominant equilibrium involving [tex]\( K_{a1} \)[/tex]:
[tex]\[ \text{H}_2\text{C}_6\text{H}_5\text{O}_7^- \leftrightarrow \text{H}^+ + \text{HC}_6\text{H}_5\text{O}_7^{2-} \][/tex]
Using the formula for the concentration of hydrogen ions [tex]\( [\text{H}^+] \)[/tex]:
[tex]\[ [\text{H}^+] = \sqrt{K_{a1} \cdot [\text{Na}_2\text{C}_6\text{H}_6\text{O}_7 ]} \][/tex]
Substituting the given values:
[tex]\[ [\text{H}^+] = \sqrt{7.44 \times 10^{-4} \cdot 0.415} \][/tex]
Computing the result:
[tex]\[ [\text{H}^+] \approx 0.01757 \, M \][/tex]
3. Calculate the pH:
The pH of the solution can be calculated using the formula:
[tex]\[ \text{pH} = -\log_{10}[\text{H}^+] \][/tex]
Substituting the concentration of hydrogen ions:
[tex]\[ \text{pH} = -\log_{10}(0.01757) \][/tex]
Computing the result:
[tex]\[ \text{pH} \approx 1.755 \][/tex]
### Final Results:
- The concentration of disodium citrate: [tex]\(0.415 \, M\)[/tex]
- The concentration of hydrogen ions: [tex]\(0.01757 \, M\)[/tex]
- The pH of the solution: [tex]\(1.755\)[/tex]
Thus, the pH of the 0.415 M solution of disodium citrate is approximately [tex]\(1.755\)[/tex].
Given:
[tex]\( K_{a1} = 7.44 \times 10^{-4} \)[/tex]
[tex]\( K_{a2} = 1.73 \times 10^{-5} \)[/tex]
[tex]\( K_{a3} = 4.02 \times 10^{-7} \)[/tex]
Concentration of disodium citrate, [tex]\( [ \text{Na}_2\text{C}_6\text{H}_6\text{O}_7 ] = 0.415 \, M \)[/tex]
### Step-by-Step Solution:
1. Identify the Predominant Species:
Disodium citrate (Na[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_6\)[/tex]O[tex]\(_7\)[/tex]) will dissociate in water, primarily forming H[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_5\)[/tex]O[tex]\(_7^-\)[/tex] ions. The most significant [tex]$\text{H}^+$[/tex] ion contribution will come from the first dissociation constant ([tex]\( K_{a1} \)[/tex]).
2. Approximation of Dominant Equilibrium:
For this predominant species H[tex]\(_2\)[/tex]C[tex]\(_6\)[/tex]H[tex]\(_5\)[/tex]O[tex]\(_7^-\)[/tex], we can use the approximation for the dominant equilibrium involving [tex]\( K_{a1} \)[/tex]:
[tex]\[ \text{H}_2\text{C}_6\text{H}_5\text{O}_7^- \leftrightarrow \text{H}^+ + \text{HC}_6\text{H}_5\text{O}_7^{2-} \][/tex]
Using the formula for the concentration of hydrogen ions [tex]\( [\text{H}^+] \)[/tex]:
[tex]\[ [\text{H}^+] = \sqrt{K_{a1} \cdot [\text{Na}_2\text{C}_6\text{H}_6\text{O}_7 ]} \][/tex]
Substituting the given values:
[tex]\[ [\text{H}^+] = \sqrt{7.44 \times 10^{-4} \cdot 0.415} \][/tex]
Computing the result:
[tex]\[ [\text{H}^+] \approx 0.01757 \, M \][/tex]
3. Calculate the pH:
The pH of the solution can be calculated using the formula:
[tex]\[ \text{pH} = -\log_{10}[\text{H}^+] \][/tex]
Substituting the concentration of hydrogen ions:
[tex]\[ \text{pH} = -\log_{10}(0.01757) \][/tex]
Computing the result:
[tex]\[ \text{pH} \approx 1.755 \][/tex]
### Final Results:
- The concentration of disodium citrate: [tex]\(0.415 \, M\)[/tex]
- The concentration of hydrogen ions: [tex]\(0.01757 \, M\)[/tex]
- The pH of the solution: [tex]\(1.755\)[/tex]
Thus, the pH of the 0.415 M solution of disodium citrate is approximately [tex]\(1.755\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.