At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve these questions, let's follow a step-by-step approach.
### Part (b): Complete the Table
First, we observe the given pattern of the number of sticks for the pattern numbers:
| Pattern number | 1 | 2 | 3 | 4 | 5 |
|----------------|---|---|---|---|---|
| Number of sticks| 3 | 5 | 7 | 9 | 11|
From this table, you can observe that:
- When the pattern number is 1, the number of sticks is 3.
- When the pattern number is 2, the number of sticks is 5.
- When the pattern number is 3, the number of sticks is 7.
- When the pattern number is 4, the number of sticks is 9.
- When the pattern number is 5, the number of sticks is 11.
You can see that the difference between consecutive numbers of sticks is always 2 (5 - 3 = 2, 7 - 5 = 2, etc.), indicating that the sequence of the number of sticks is in arithmetic progression.
### Part (c): How many sticks make Pattern number 15?
To find the number of sticks for any pattern number in this arithmetic sequence, we use the formula for the n-th term of an arithmetic sequence:
[tex]\[a_n = a + (n - 1) \cdot d\][/tex]
Where:
- [tex]\(a_n\)[/tex] is the n-th term (number of sticks for the given pattern number)
- [tex]\(a\)[/tex] is the first term of the sequence
- [tex]\(d\)[/tex] is the common difference between the terms
- [tex]\(n\)[/tex] is the term number (pattern number)
From the table:
- The first term, [tex]\(a\)[/tex] = 3
- The common difference, [tex]\(d\)[/tex] = 2
- To find the number of sticks for pattern number 15, we set [tex]\(n = 15\)[/tex]
Now, substitute these values into the formula:
[tex]\[a_{15} = 3 + (15 - 1) \cdot 2\][/tex]
Calculate the terms step-by-step:
1. First, calculate [tex]\((n - 1)\)[/tex]:
[tex]\[15 - 1 = 14\][/tex]
2. Then multiply by the common difference [tex]\(d\)[/tex]:
[tex]\[14 \cdot 2 = 28\][/tex]
3. Finally, add this result to the first term [tex]\(a\)[/tex]:
[tex]\[3 + 28 = 31\][/tex]
Therefore, the number of sticks that make Pattern number 15 is [tex]\(31\)[/tex].
### Part (b): Complete the Table
First, we observe the given pattern of the number of sticks for the pattern numbers:
| Pattern number | 1 | 2 | 3 | 4 | 5 |
|----------------|---|---|---|---|---|
| Number of sticks| 3 | 5 | 7 | 9 | 11|
From this table, you can observe that:
- When the pattern number is 1, the number of sticks is 3.
- When the pattern number is 2, the number of sticks is 5.
- When the pattern number is 3, the number of sticks is 7.
- When the pattern number is 4, the number of sticks is 9.
- When the pattern number is 5, the number of sticks is 11.
You can see that the difference between consecutive numbers of sticks is always 2 (5 - 3 = 2, 7 - 5 = 2, etc.), indicating that the sequence of the number of sticks is in arithmetic progression.
### Part (c): How many sticks make Pattern number 15?
To find the number of sticks for any pattern number in this arithmetic sequence, we use the formula for the n-th term of an arithmetic sequence:
[tex]\[a_n = a + (n - 1) \cdot d\][/tex]
Where:
- [tex]\(a_n\)[/tex] is the n-th term (number of sticks for the given pattern number)
- [tex]\(a\)[/tex] is the first term of the sequence
- [tex]\(d\)[/tex] is the common difference between the terms
- [tex]\(n\)[/tex] is the term number (pattern number)
From the table:
- The first term, [tex]\(a\)[/tex] = 3
- The common difference, [tex]\(d\)[/tex] = 2
- To find the number of sticks for pattern number 15, we set [tex]\(n = 15\)[/tex]
Now, substitute these values into the formula:
[tex]\[a_{15} = 3 + (15 - 1) \cdot 2\][/tex]
Calculate the terms step-by-step:
1. First, calculate [tex]\((n - 1)\)[/tex]:
[tex]\[15 - 1 = 14\][/tex]
2. Then multiply by the common difference [tex]\(d\)[/tex]:
[tex]\[14 \cdot 2 = 28\][/tex]
3. Finally, add this result to the first term [tex]\(a\)[/tex]:
[tex]\[3 + 28 = 31\][/tex]
Therefore, the number of sticks that make Pattern number 15 is [tex]\(31\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.