Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Given the vertices [tex]\(A(11,-7), B(9,-4), C(11,-1)\)[/tex], and [tex]\(D(13,-4)\)[/tex], and comparing them to the provided answers, we proceed as follows:
First, we determine the lengths of the sides of the quadrilateral ABCD.
For [tex]\(AB\)[/tex]:
[tex]\[ AB = \sqrt{(9 - 11)^2 + (-4 - (-7))^2} = \sqrt{(-2)^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.605551275463989 \][/tex]
For [tex]\(BC\)[/tex]:
[tex]\[ BC = \sqrt{(11 - 9)^2 + (-1 - (-4))^2} = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.605551275463989 \][/tex]
For [tex]\(CD\)[/tex]:
[tex]\[ CD = \sqrt{(13 - 11)^2 + (-4 - (-1))^2} = \sqrt{2^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.605551275463989 \][/tex]
For [tex]\(DA\)[/tex]:
[tex]\[ DA = \sqrt{(13 - 11)^2 + (-4 - (-7))^2} = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.605551275463989 \][/tex]
All sides of quadrilateral [tex]\(ABCD\)[/tex] are equal to [tex]\(\sqrt{13} \approx 3.605551275463989\)[/tex].
Next, we need to determine if this is a parallelogram. For it to be a parallelogram, opposite sides must be equal and parallel.
Additionally, we check the diagonals to see if they're equal:
[tex]\[ AC = \sqrt{(11 - 11)^2 + (-1 - (-7))^2} = \sqrt{0 + 36} = 6 \][/tex]
[tex]\[ BD = \sqrt{(13 - 9)^2 + (-4 - (-4))^2} = \sqrt{4^2 + 0} = 4 \][/tex]
Since AC and BD do not equal, ABCD is not a parallelogram; however, as all sides are equal and its diagonals do not bisect each other equally, it is a rhombus.
Next, we consider [tex]\(C^{\prime}(11, 1)\)[/tex] instead of [tex]\(C\)[/tex]. We compute the distances:
For [tex]\(B C'\)[/tex]:
[tex]\[ BC' = \sqrt{(11 - 9)^2 + (1 - (-4))^2} = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385164807134504 \][/tex]
For [tex]\(C' D\)[/tex]:
[tex]\[ C'D = \sqrt{(11 - 13)^2 + (1 - (-4))^2} = \sqrt{(-2)^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385164807134504 \][/tex]
For [tex]\(DA\)[/tex]:
[tex]\[ DA = \sqrt{(13 - 11)^2 + (-4 - (-7))^2} = \sqrt{2^2 + 3^2} = \sqrt{13} \approx 3.605551275463989 \][/tex]
Given the difference in side lengths [tex]\( \sqrt{13}\)[/tex] and [tex]\( \approx \sqrt{29}\)[/tex], [tex]\(AB' C' D\)[/tex] cannot be a parallelogram or a rhombus. Hence, it’s a general quadrilateral, not fitting any special categories of quadrilaterals listed here.
Therefore:
Quadrilateral [tex]\(ABCD\)[/tex] is a rhombus. Quadrilateral [tex]\(AB'C'D\)[/tex] would be a quadrilateral.
Final Answer:
Quadrilateral [tex]\(ABCD\)[/tex] is a [tex]\(\boxed{\text{Rhombus}}\)[/tex] and [tex]\(AB'C'D\)[/tex] would be a [tex]\(\boxed{\text{Quadrilateral}}\)[/tex].
First, we determine the lengths of the sides of the quadrilateral ABCD.
For [tex]\(AB\)[/tex]:
[tex]\[ AB = \sqrt{(9 - 11)^2 + (-4 - (-7))^2} = \sqrt{(-2)^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.605551275463989 \][/tex]
For [tex]\(BC\)[/tex]:
[tex]\[ BC = \sqrt{(11 - 9)^2 + (-1 - (-4))^2} = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.605551275463989 \][/tex]
For [tex]\(CD\)[/tex]:
[tex]\[ CD = \sqrt{(13 - 11)^2 + (-4 - (-1))^2} = \sqrt{2^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.605551275463989 \][/tex]
For [tex]\(DA\)[/tex]:
[tex]\[ DA = \sqrt{(13 - 11)^2 + (-4 - (-7))^2} = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.605551275463989 \][/tex]
All sides of quadrilateral [tex]\(ABCD\)[/tex] are equal to [tex]\(\sqrt{13} \approx 3.605551275463989\)[/tex].
Next, we need to determine if this is a parallelogram. For it to be a parallelogram, opposite sides must be equal and parallel.
Additionally, we check the diagonals to see if they're equal:
[tex]\[ AC = \sqrt{(11 - 11)^2 + (-1 - (-7))^2} = \sqrt{0 + 36} = 6 \][/tex]
[tex]\[ BD = \sqrt{(13 - 9)^2 + (-4 - (-4))^2} = \sqrt{4^2 + 0} = 4 \][/tex]
Since AC and BD do not equal, ABCD is not a parallelogram; however, as all sides are equal and its diagonals do not bisect each other equally, it is a rhombus.
Next, we consider [tex]\(C^{\prime}(11, 1)\)[/tex] instead of [tex]\(C\)[/tex]. We compute the distances:
For [tex]\(B C'\)[/tex]:
[tex]\[ BC' = \sqrt{(11 - 9)^2 + (1 - (-4))^2} = \sqrt{2^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385164807134504 \][/tex]
For [tex]\(C' D\)[/tex]:
[tex]\[ C'D = \sqrt{(11 - 13)^2 + (1 - (-4))^2} = \sqrt{(-2)^2 + 5^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385164807134504 \][/tex]
For [tex]\(DA\)[/tex]:
[tex]\[ DA = \sqrt{(13 - 11)^2 + (-4 - (-7))^2} = \sqrt{2^2 + 3^2} = \sqrt{13} \approx 3.605551275463989 \][/tex]
Given the difference in side lengths [tex]\( \sqrt{13}\)[/tex] and [tex]\( \approx \sqrt{29}\)[/tex], [tex]\(AB' C' D\)[/tex] cannot be a parallelogram or a rhombus. Hence, it’s a general quadrilateral, not fitting any special categories of quadrilaterals listed here.
Therefore:
Quadrilateral [tex]\(ABCD\)[/tex] is a rhombus. Quadrilateral [tex]\(AB'C'D\)[/tex] would be a quadrilateral.
Final Answer:
Quadrilateral [tex]\(ABCD\)[/tex] is a [tex]\(\boxed{\text{Rhombus}}\)[/tex] and [tex]\(AB'C'D\)[/tex] would be a [tex]\(\boxed{\text{Quadrilateral}}\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.