Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the interval over which the graph of the function [tex]\( f(x) = -x^2 + 3x + 8 \)[/tex] is increasing, follow these steps:
1. Find the derivative of the function [tex]\( f(x) \)[/tex]:
The first step is to differentiate the function [tex]\( f(x) \)[/tex] to find its derivative [tex]\( f'(x) \)[/tex]. The derivative of the function gives us the slope of the tangent line at any point [tex]\( x \)[/tex] on the graph. Calculating the derivative,
[tex]\[ f'(x) = \frac{d}{dx}(-x^2 + 3x + 8) = -2x + 3 \][/tex]
2. Determine where the derivative is positive:
A function is increasing where its derivative is positive. So, we need to find the values of [tex]\( x \)[/tex] for which [tex]\( f'(x) > 0 \)[/tex].
Set the inequality:
[tex]\[ -2x + 3 > 0 \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ -2x + 3 > 0 \][/tex]
[tex]\[ 3 > 2x \][/tex]
[tex]\[ \frac{3}{2} > x \][/tex]
[tex]\[ x < 1.5 \][/tex]
Thus, [tex]\( f(x) \)[/tex] is increasing for [tex]\( x < 1.5 \)[/tex].
3. Write the interval where the function is increasing:
Based on the solution to the inequality, [tex]\( f(x) \)[/tex] is increasing on the interval [tex]\( (-\infty, 1.5) \)[/tex].
Therefore, the interval over which the graph of [tex]\( f(x) = -x^2 + 3x + 8 \)[/tex] is increasing is:
[tex]\[ \boxed{(-\infty, 1.5)} \][/tex]
1. Find the derivative of the function [tex]\( f(x) \)[/tex]:
The first step is to differentiate the function [tex]\( f(x) \)[/tex] to find its derivative [tex]\( f'(x) \)[/tex]. The derivative of the function gives us the slope of the tangent line at any point [tex]\( x \)[/tex] on the graph. Calculating the derivative,
[tex]\[ f'(x) = \frac{d}{dx}(-x^2 + 3x + 8) = -2x + 3 \][/tex]
2. Determine where the derivative is positive:
A function is increasing where its derivative is positive. So, we need to find the values of [tex]\( x \)[/tex] for which [tex]\( f'(x) > 0 \)[/tex].
Set the inequality:
[tex]\[ -2x + 3 > 0 \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ -2x + 3 > 0 \][/tex]
[tex]\[ 3 > 2x \][/tex]
[tex]\[ \frac{3}{2} > x \][/tex]
[tex]\[ x < 1.5 \][/tex]
Thus, [tex]\( f(x) \)[/tex] is increasing for [tex]\( x < 1.5 \)[/tex].
3. Write the interval where the function is increasing:
Based on the solution to the inequality, [tex]\( f(x) \)[/tex] is increasing on the interval [tex]\( (-\infty, 1.5) \)[/tex].
Therefore, the interval over which the graph of [tex]\( f(x) = -x^2 + 3x + 8 \)[/tex] is increasing is:
[tex]\[ \boxed{(-\infty, 1.5)} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.