Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To express [tex]\(\sqrt[5]{192}\)[/tex] in simplified radical form, we need to understand how to break down the number 192 into its prime factors and then simplify the expression.
1. Prime Factorization of 192:
- 192 can be factorized as follows:
[tex]\[ 192 = 2 \times 96 = 2 \times 2 \times 48 = 2 \times 2 \times 2 \times 24 = 2 \times 2 \times 2 \times 2 \times 12 = 2 \times 2 \times 2 \times 2 \times 2 \times 6 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \][/tex]
- So, the prime factorization of 192 is:
[tex]\[ 192 = 2^6 \times 3 \][/tex]
2. Expressing the 5th Root:
- We are looking for the 5th root of [tex]\(192\)[/tex]:
[tex]\[ \sqrt[5]{192} = \sqrt[5]{2^6 \times 3} \][/tex]
3. Simplifying the Radical:
- The properties of roots allow us to separate the factors under the root:
[tex]\[ \sqrt[5]{2^6 \times 3} = \sqrt[5]{2^6} \times \sqrt[5]{3} \][/tex]
- We know from exponent properties that:
[tex]\[ \sqrt[5]{2^6} = 2^{6/5} = 2 \times 2^{1/5} \][/tex]
4. Combining the Terms:
- Now we multiply the simplified terms:
[tex]\[ 2 \times \sqrt[5]{2} \times \sqrt[5]{3} \][/tex]
- Since [tex]\(\sqrt[5]{2} \times \sqrt[5]{3} = \sqrt[5]{6}\)[/tex]:
[tex]\[ 2 \times \sqrt[5]{6} \][/tex]
Hence, the simplified radical form of [tex]\(\sqrt[5]{192}\)[/tex] is:
[tex]\[ 2 \times \sqrt[5]{6} \][/tex]
So, [tex]\(\sqrt[5]{192}\)[/tex] in simplified radical form is [tex]\(2 \cdot 6^{1/5}\)[/tex].
1. Prime Factorization of 192:
- 192 can be factorized as follows:
[tex]\[ 192 = 2 \times 96 = 2 \times 2 \times 48 = 2 \times 2 \times 2 \times 24 = 2 \times 2 \times 2 \times 2 \times 12 = 2 \times 2 \times 2 \times 2 \times 2 \times 6 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \][/tex]
- So, the prime factorization of 192 is:
[tex]\[ 192 = 2^6 \times 3 \][/tex]
2. Expressing the 5th Root:
- We are looking for the 5th root of [tex]\(192\)[/tex]:
[tex]\[ \sqrt[5]{192} = \sqrt[5]{2^6 \times 3} \][/tex]
3. Simplifying the Radical:
- The properties of roots allow us to separate the factors under the root:
[tex]\[ \sqrt[5]{2^6 \times 3} = \sqrt[5]{2^6} \times \sqrt[5]{3} \][/tex]
- We know from exponent properties that:
[tex]\[ \sqrt[5]{2^6} = 2^{6/5} = 2 \times 2^{1/5} \][/tex]
4. Combining the Terms:
- Now we multiply the simplified terms:
[tex]\[ 2 \times \sqrt[5]{2} \times \sqrt[5]{3} \][/tex]
- Since [tex]\(\sqrt[5]{2} \times \sqrt[5]{3} = \sqrt[5]{6}\)[/tex]:
[tex]\[ 2 \times \sqrt[5]{6} \][/tex]
Hence, the simplified radical form of [tex]\(\sqrt[5]{192}\)[/tex] is:
[tex]\[ 2 \times \sqrt[5]{6} \][/tex]
So, [tex]\(\sqrt[5]{192}\)[/tex] in simplified radical form is [tex]\(2 \cdot 6^{1/5}\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.