Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's solve the given system of equations using the elimination method. The system of equations is:
[tex]\[ \begin{array}{l} -3x + 2y = 9 \\ x + y = 12 \end{array} \][/tex]
### Step-by-Step Solution
1. Label the equations for reference:
[tex]\[ \begin{array}{l} -3x + 2y = 9 \quad \text{(Equation 1)} \\ x + y = 12 \quad \text{(Equation 2)} \end{array} \][/tex]
2. Eliminate one variable:
To eliminate [tex]\(x\)[/tex], we can multiply Equation 2 by 3 so that the coefficients of [tex]\(x\)[/tex] will be opposites. This will allow us to add the equations and eliminate [tex]\(x\)[/tex].
[tex]\[ 3(x + y) = 3 \cdot 12 \][/tex]
Simplifying, we get:
[tex]\[ 3x + 3y = 36 \quad \text{(Equation 3)} \][/tex]
3. Add Equation 1 and Equation 3:
[tex]\[ \begin{array}{rcl} -3x + 2y & = & 9 \\ 3x + 3y & = & 36 \\ \hline 0x + 5y & = & 45 \end{array} \][/tex]
Simplifying, we get:
[tex]\[ 5y = 45 \][/tex]
Solving for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{45}{5} = 9 \][/tex]
4. Substitute [tex]\(y\)[/tex] back into one of the original equations to solve for [tex]\(x\)[/tex]:
We can use Equation 2:
[tex]\[ x + y = 12 \][/tex]
Substituting [tex]\(y = 9\)[/tex]:
[tex]\[ x + 9 = 12 \][/tex]
Solving for [tex]\(x\)[/tex]:
[tex]\[ x = 12 - 9 = 3 \][/tex]
### Solution
The solution to the system of equations is [tex]\((x, y) = (3, 9)\)[/tex].
So, the correct answer is:
[tex]\[ (3, 9) \][/tex]
Therefore, among the given choices:
- [tex]\((-3, 0)\)[/tex]
- [tex]\((1, 6)\)[/tex]
- [tex]\((3, 9)\)[/tex]
- [tex]\((5, 7)\)[/tex]
The correct solution is [tex]\((3, 9)\)[/tex].
[tex]\[ \begin{array}{l} -3x + 2y = 9 \\ x + y = 12 \end{array} \][/tex]
### Step-by-Step Solution
1. Label the equations for reference:
[tex]\[ \begin{array}{l} -3x + 2y = 9 \quad \text{(Equation 1)} \\ x + y = 12 \quad \text{(Equation 2)} \end{array} \][/tex]
2. Eliminate one variable:
To eliminate [tex]\(x\)[/tex], we can multiply Equation 2 by 3 so that the coefficients of [tex]\(x\)[/tex] will be opposites. This will allow us to add the equations and eliminate [tex]\(x\)[/tex].
[tex]\[ 3(x + y) = 3 \cdot 12 \][/tex]
Simplifying, we get:
[tex]\[ 3x + 3y = 36 \quad \text{(Equation 3)} \][/tex]
3. Add Equation 1 and Equation 3:
[tex]\[ \begin{array}{rcl} -3x + 2y & = & 9 \\ 3x + 3y & = & 36 \\ \hline 0x + 5y & = & 45 \end{array} \][/tex]
Simplifying, we get:
[tex]\[ 5y = 45 \][/tex]
Solving for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{45}{5} = 9 \][/tex]
4. Substitute [tex]\(y\)[/tex] back into one of the original equations to solve for [tex]\(x\)[/tex]:
We can use Equation 2:
[tex]\[ x + y = 12 \][/tex]
Substituting [tex]\(y = 9\)[/tex]:
[tex]\[ x + 9 = 12 \][/tex]
Solving for [tex]\(x\)[/tex]:
[tex]\[ x = 12 - 9 = 3 \][/tex]
### Solution
The solution to the system of equations is [tex]\((x, y) = (3, 9)\)[/tex].
So, the correct answer is:
[tex]\[ (3, 9) \][/tex]
Therefore, among the given choices:
- [tex]\((-3, 0)\)[/tex]
- [tex]\((1, 6)\)[/tex]
- [tex]\((3, 9)\)[/tex]
- [tex]\((5, 7)\)[/tex]
The correct solution is [tex]\((3, 9)\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.