Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the value of [tex]\( x \)[/tex] for which the fraction [tex]\( \frac{1}{x} \)[/tex] represents the experimental probability of a book reader having a defective backlight, we need to follow these steps:
1. Find the total number of readers tested and the number of defective readers:
- Total readers tested: 2000
- Defective readers: 8
2. Calculate the experimental probability as a fraction:
The experimental probability [tex]\( P \)[/tex] of a book reader being defective is given by:
[tex]\[ P = \frac{\text{Number of defective readers}}{\text{Total number of readers tested}} = \frac{8}{2000} \][/tex]
3. Simplify the fraction:
To find the value of [tex]\( P \)[/tex], we simplify the fraction:
[tex]\[ P = \frac{8}{2000} = \frac{1}{250} \][/tex]
4. Determine the value of [tex]\( x \)[/tex]:
Since [tex]\( P = \frac{1}{250} \)[/tex], it is clear that the experimental probability is represented by [tex]\( \frac{1}{x} \)[/tex] where [tex]\( x = 250 \)[/tex].
Thus, the value of [tex]\( x \)[/tex] is [tex]\( 250 \)[/tex].
1. Find the total number of readers tested and the number of defective readers:
- Total readers tested: 2000
- Defective readers: 8
2. Calculate the experimental probability as a fraction:
The experimental probability [tex]\( P \)[/tex] of a book reader being defective is given by:
[tex]\[ P = \frac{\text{Number of defective readers}}{\text{Total number of readers tested}} = \frac{8}{2000} \][/tex]
3. Simplify the fraction:
To find the value of [tex]\( P \)[/tex], we simplify the fraction:
[tex]\[ P = \frac{8}{2000} = \frac{1}{250} \][/tex]
4. Determine the value of [tex]\( x \)[/tex]:
Since [tex]\( P = \frac{1}{250} \)[/tex], it is clear that the experimental probability is represented by [tex]\( \frac{1}{x} \)[/tex] where [tex]\( x = 250 \)[/tex].
Thus, the value of [tex]\( x \)[/tex] is [tex]\( 250 \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.