Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the value of [tex]\( x \)[/tex] for which the fraction [tex]\( \frac{1}{x} \)[/tex] represents the experimental probability of a book reader having a defective backlight, we need to follow these steps:
1. Find the total number of readers tested and the number of defective readers:
- Total readers tested: 2000
- Defective readers: 8
2. Calculate the experimental probability as a fraction:
The experimental probability [tex]\( P \)[/tex] of a book reader being defective is given by:
[tex]\[ P = \frac{\text{Number of defective readers}}{\text{Total number of readers tested}} = \frac{8}{2000} \][/tex]
3. Simplify the fraction:
To find the value of [tex]\( P \)[/tex], we simplify the fraction:
[tex]\[ P = \frac{8}{2000} = \frac{1}{250} \][/tex]
4. Determine the value of [tex]\( x \)[/tex]:
Since [tex]\( P = \frac{1}{250} \)[/tex], it is clear that the experimental probability is represented by [tex]\( \frac{1}{x} \)[/tex] where [tex]\( x = 250 \)[/tex].
Thus, the value of [tex]\( x \)[/tex] is [tex]\( 250 \)[/tex].
1. Find the total number of readers tested and the number of defective readers:
- Total readers tested: 2000
- Defective readers: 8
2. Calculate the experimental probability as a fraction:
The experimental probability [tex]\( P \)[/tex] of a book reader being defective is given by:
[tex]\[ P = \frac{\text{Number of defective readers}}{\text{Total number of readers tested}} = \frac{8}{2000} \][/tex]
3. Simplify the fraction:
To find the value of [tex]\( P \)[/tex], we simplify the fraction:
[tex]\[ P = \frac{8}{2000} = \frac{1}{250} \][/tex]
4. Determine the value of [tex]\( x \)[/tex]:
Since [tex]\( P = \frac{1}{250} \)[/tex], it is clear that the experimental probability is represented by [tex]\( \frac{1}{x} \)[/tex] where [tex]\( x = 250 \)[/tex].
Thus, the value of [tex]\( x \)[/tex] is [tex]\( 250 \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.