Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Find the explicit form of the arithmetic function [tex]\( g \)[/tex] if the first term is 6 and the common difference is -3. Then find the seventh term.

A. [tex]\( f(g) = 3(g - 1) + 6 \)[/tex], the seventh term is 24
B. [tex]\( f(g) = -3(g - 1) + 6 \)[/tex], the seventh term is -12
C. [tex]\( f(g) = 6(g - 1) - 3 \)[/tex], the seventh term is 33
D. [tex]\( f(g) = 6(g - 1) + 3 \)[/tex], the seventh term is 39


Sagot :

To solve this problem, we are given the following conditions:

1. The first term of an arithmetic sequence is 6.
2. The common difference is -3.
3. We want to find the explicit form of the arithmetic function [tex]\( f(g) \)[/tex] and determine the seventh term.

Let's break down the steps to find the explicit form of the arithmetic function and then compute the seventh term.

### Step 1: Explicit Form of the Arithmetic Function
The general formula for the [tex]\( g \)[/tex]-th term of an arithmetic sequence is given by:
[tex]\[ a_g = a_1 + (g - 1)d \][/tex]
where:
- [tex]\( a_g \)[/tex] is the [tex]\( g \)[/tex]-th term,
- [tex]\( a_1 \)[/tex] is the first term,
- [tex]\( d \)[/tex] is the common difference, and
- [tex]\( g \)[/tex] is the term number we are interested in.

Given:
- [tex]\( a_1 = 6 \)[/tex]
- [tex]\( d = -3 \)[/tex]

The explicit form of the arithmetic function ([tex]\( f(g) \)[/tex]) is therefore:
[tex]\[ f(g) = 6 + (g - 1)(-3) \][/tex]

### Step 2: Simplify the Function
Simplify the expression for the explicit form:
[tex]\[ f(g) = 6 + (g - 1)(-3) \][/tex]
[tex]\[ f(g) = 6 - 3(g - 1) \][/tex]
[tex]\[ f(g) = 6 - 3g + 3 \][/tex]
[tex]\[ f(g) = 9 - 3g \][/tex]

So, the explicit form of the arithmetic function [tex]\( f(g) \)[/tex] is:
[tex]\[ f(g) = 9 - 3g \][/tex]

### Step 3: Find the Seventh Term
To find the seventh term ([tex]\( g = 7 \)[/tex]), substitute [tex]\( g = 7 \)[/tex] into the function:
[tex]\[ f(7) = 9 - 3(7) \][/tex]
[tex]\[ f(7) = 9 - 21 \][/tex]
[tex]\[ f(7) = -12 \][/tex]

### Conclusion
The explicit form of the arithmetic function is [tex]\( f(g) = 9 - 3g \)[/tex], and the seventh term is:
[tex]\[ f(7) = -12 \][/tex]

Therefore, the correct choice is:
[tex]\[ f(g) = -3(g - 1) + 6 \][/tex]
with the seventh term being [tex]\(-12\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.