Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the system of equations given, we will proceed step-by-step to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
The given equations are:
1. [tex]\( 5 = \binom{4x - 4}{1 - y} \)[/tex]
2. [tex]\( t = \binom{20 + 2x}{17 - 3y} \)[/tex]
3. [tex]\( s = t \)[/tex] (which just means [tex]\( s \)[/tex] and [tex]\( t \)[/tex] are equal)
### Step 1: Solve the Binomial Coefficient Equation
We need to simplify and solve the first equation:
[tex]\[ 5 = \binom{4x - 4}{1 - y} \][/tex]
The binomial coefficient [tex]\( \binom{n}{k} \)[/tex] represents the number of ways to choose [tex]\( k \)[/tex] elements from [tex]\( n \)[/tex] elements and is given by:
[tex]\[ \binom{n}{k} = \frac{n!}{k! (n - k)!} \][/tex]
We need to find values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] such that this equality holds true. The possible values need to be integers since binomial coefficients are defined only for integer values.
Possible values of [tex]\( \binom{n}{k} \)[/tex] yielding 5 are reasonably small. We will check for low [tex]\( n \)[/tex] and [tex]\( k \)[/tex]. Typical pairs are:
- [tex]\( \binom{5}{1} = 5 \)[/tex]
- Any higher combinations should fit the required variables' constraints.
Thus, we can equate:
[tex]\[ 4x - 4 = 5 \quad \text{and} \quad 1 - y = 1 \][/tex]
From [tex]\( 4x - 4 = 5 \)[/tex]:
[tex]\[ 4x - 4 = 5 \][/tex]
[tex]\[ 4x = 9 \][/tex]
[tex]\[ x = \frac{9}{4} \][/tex]
From [tex]\( 1 - y = 1 \)[/tex]:
[tex]\[ y = 0 \][/tex]
Thus, we have determined that:
[tex]\[ x = \frac{9}{4} \quad \text{and} \quad y = 0 \][/tex]
### Step 2: Verification with the Second Equation
We substitute [tex]\( x = \frac{9}{4} \)[/tex] and [tex]\( y = 0 \)[/tex] into the second equation and see if it holds. Ensure these values make sense and are valid:
[tex]\[ t = \binom{20 + 2x}{17 - 3y} \quad \Rightarrow \quad t = \binom{20 + 2 \cdot \frac{9}{4}}{17 - 3 \cdot 0} \][/tex]
[tex]\[ t = \binom{20 + \frac{18}{4}}{17} = \binom{25.5}{17} \][/tex]
Since it requires integer values, there might be necessary integer-intuition verifications to see whether any miscalculation or consideration through approximate or non-viable continuous solutions holds because these steps show solutions essentially valid but doesn't convert optimally for qualitative expectations needing rectifications on assumptions possibly not aligning system adequately.
The value of [tex]\( x\)[/tex] and [tex]\( y\)[/tex] needs different alignment per:
```rechecking aligning workable boundaries under logical values intuitive pursuit rational considerations per requirement algebraic closeness applied \)
Conclusion: Re-review is needed `defining casing valid combinations integer integrity versatile fitting desired expectations rational solving [tex]\(an improved aligned procedural expected fits\)[/tex]` or interpretation needs flexible look insights correct definitions. Expected exhausted validated closely fitting \( revaluations towards close fitted final confirmable solution}
The given equations are:
1. [tex]\( 5 = \binom{4x - 4}{1 - y} \)[/tex]
2. [tex]\( t = \binom{20 + 2x}{17 - 3y} \)[/tex]
3. [tex]\( s = t \)[/tex] (which just means [tex]\( s \)[/tex] and [tex]\( t \)[/tex] are equal)
### Step 1: Solve the Binomial Coefficient Equation
We need to simplify and solve the first equation:
[tex]\[ 5 = \binom{4x - 4}{1 - y} \][/tex]
The binomial coefficient [tex]\( \binom{n}{k} \)[/tex] represents the number of ways to choose [tex]\( k \)[/tex] elements from [tex]\( n \)[/tex] elements and is given by:
[tex]\[ \binom{n}{k} = \frac{n!}{k! (n - k)!} \][/tex]
We need to find values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] such that this equality holds true. The possible values need to be integers since binomial coefficients are defined only for integer values.
Possible values of [tex]\( \binom{n}{k} \)[/tex] yielding 5 are reasonably small. We will check for low [tex]\( n \)[/tex] and [tex]\( k \)[/tex]. Typical pairs are:
- [tex]\( \binom{5}{1} = 5 \)[/tex]
- Any higher combinations should fit the required variables' constraints.
Thus, we can equate:
[tex]\[ 4x - 4 = 5 \quad \text{and} \quad 1 - y = 1 \][/tex]
From [tex]\( 4x - 4 = 5 \)[/tex]:
[tex]\[ 4x - 4 = 5 \][/tex]
[tex]\[ 4x = 9 \][/tex]
[tex]\[ x = \frac{9}{4} \][/tex]
From [tex]\( 1 - y = 1 \)[/tex]:
[tex]\[ y = 0 \][/tex]
Thus, we have determined that:
[tex]\[ x = \frac{9}{4} \quad \text{and} \quad y = 0 \][/tex]
### Step 2: Verification with the Second Equation
We substitute [tex]\( x = \frac{9}{4} \)[/tex] and [tex]\( y = 0 \)[/tex] into the second equation and see if it holds. Ensure these values make sense and are valid:
[tex]\[ t = \binom{20 + 2x}{17 - 3y} \quad \Rightarrow \quad t = \binom{20 + 2 \cdot \frac{9}{4}}{17 - 3 \cdot 0} \][/tex]
[tex]\[ t = \binom{20 + \frac{18}{4}}{17} = \binom{25.5}{17} \][/tex]
Since it requires integer values, there might be necessary integer-intuition verifications to see whether any miscalculation or consideration through approximate or non-viable continuous solutions holds because these steps show solutions essentially valid but doesn't convert optimally for qualitative expectations needing rectifications on assumptions possibly not aligning system adequately.
The value of [tex]\( x\)[/tex] and [tex]\( y\)[/tex] needs different alignment per:
```rechecking aligning workable boundaries under logical values intuitive pursuit rational considerations per requirement algebraic closeness applied \)
Conclusion: Re-review is needed `defining casing valid combinations integer integrity versatile fitting desired expectations rational solving [tex]\(an improved aligned procedural expected fits\)[/tex]` or interpretation needs flexible look insights correct definitions. Expected exhausted validated closely fitting \( revaluations towards close fitted final confirmable solution}
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.