At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Triangle [tex][tex]$ABC$[/tex][/tex] has vertices [tex][tex]$A(-3,1)$[/tex][/tex], [tex][tex]$B(-3,4)$[/tex][/tex], and [tex][tex]$C(-7, 1)$[/tex][/tex].

1. Part A: If [tex][tex]$\triangle ABC$[/tex][/tex] is translated according to the rule [tex][tex]$(x, y) \rightarrow (x+4, y-3)$[/tex][/tex] to form [tex][tex]$\triangle A'B'C'$[/tex][/tex], how is the translation described in words? (3 points)

2. Part B: Where are the vertices of [tex][tex]$\triangle A'B'C'$[/tex][/tex] located? Show your work or explain your steps. (4 points)

3. Part C: Triangle [tex][tex]$\triangle A'B'C'$[/tex][/tex] is rotated [tex][tex]$90^\circ$[/tex][/tex] counterclockwise about the origin to form [tex][tex]$\triangle A''B''C''$[/tex][/tex]. Is [tex][tex]$\triangle ABC$[/tex][/tex] congruent to [tex][tex]$\triangle A''B''C''$[/tex][/tex]? Provide details to support your answer. (3 points)

Sagot :

Sure, let's solve this problem step-by-step.

### Part A: Translation Description

The translation rule given is [tex]\((x, y) \rightarrow (x + 4, y - 3)\)[/tex]. This means that we need to translate each point 4 units to the right and 3 units downwards. Hence, the translation can be described in words as:

Translate 4 units to the right and 3 units downwards.

### Part B: Vertices of [tex]\(\triangle A^{\prime} B^{\prime} C^{\prime}\)[/tex]
To find the vertices of the translated triangle [tex]\(\triangle A^{\prime} B^{\prime} C^{\prime}\)[/tex], we apply the translation rule to each of the original vertices [tex]\(A(-3, 1)\)[/tex], [tex]\(B(-3, 4)\)[/tex], and [tex]\(C(-7, 1)\)[/tex].

1. For vertex [tex]\(A(-3, 1)\)[/tex]:
[tex]\[ A' = (x + 4, y - 3) = (-3 + 4, 1 - 3) = (1, -2) \][/tex]

2. For vertex [tex]\(B(-3, 4)\)[/tex]:
[tex]\[ B' = (x + 4, y - 3) = (-3 + 4, 4 - 3) = (1, 1) \][/tex]

3. For vertex [tex]\(C(-7, 1)\)[/tex]:
[tex]\[ C' = (x + 4, y - 3) = (-7 + 4, 1 - 3) = (-3, -2) \][/tex]

Therefore, the vertices are:
[tex]\[ A' = (1, -2), \quad B' = (1, 1), \quad C' = (-3, -2) \][/tex]

### Part C: Rotation of [tex]\(\triangle A^{\prime} B^{\prime} C^{\prime}\)[/tex]

Now, we rotate [tex]\(\triangle A^{\prime} B^{\prime} C^{\prime}\)[/tex] [tex]\(90^\circ\)[/tex] counterclockwise about the origin. The rotation rule for [tex]\(90^\circ\)[/tex] counterclockwise is [tex]\((x, y) \rightarrow (-y, x)\)[/tex]. We apply this to each of the vertices [tex]\(A'(1, -2)\)[/tex], [tex]\(B'(1, 1)\)[/tex], and [tex]\(C'(-3, -2)\)[/tex].

1. For vertex [tex]\(A'(1, -2)\)[/tex]:
[tex]\[ A'' = (-(-2), 1) = (2, 1) \][/tex]

2. For vertex [tex]\(B'(1, 1)\)[/tex]:
[tex]\[ B'' = (-(1), 1) = (-1, 1) \][/tex]

3. For vertex [tex]\(C'(-3, -2)\)[/tex]:
[tex]\[ C'' = (-(-2), -3) = (2, -3) \][/tex]

The vertices of the rotated [tex]\(\triangle A'' B'' C''\)[/tex] are:
[tex]\[ A'' = (2, 1), \quad B'' = (-1, 1), \quad C'' = (2, -3) \][/tex]

### Congruency Check

To determine if [tex]\(\triangle A B C\)[/tex] is congruent to [tex]\(\triangle A'' B'' C''\)[/tex], we compare the side lengths of both triangles.

1. Original triangle [tex]\(\triangle A B C\)[/tex]:
[tex]\[ \text{Side } AB = \|A - B\| = \sqrt{(-3 - (-3))^2 + (1 - 4)^2} = \sqrt{0^2 + (-3)^2} = 3 \][/tex]
[tex]\[ \text{Side } BC = \|B - C\| = \sqrt{(-3 - (-7))^2 + (4 - 1)^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = 5 \][/tex]
[tex]\[ \text{Side } CA = \|C - A\| = \sqrt{(-7 - (-3))^2 + (1 - 1)^2} = \sqrt{(-4)^2 + 0^2} = 4 \][/tex]

2. Rotated triangle [tex]\(\triangle A'' B'' C''\)[/tex]:
[tex]\[ \text{Side } A''B'' = \|A'' - B''\| = \sqrt{(2 - (-1))^2 + (1 - 1)^2} = \sqrt{3^2 + 0^2} = 3 \][/tex]
[tex]\[ \text{Side } B''C'' = \|B'' - C''\| = \sqrt{(-1 - 2)^2 + (1 - (-3))^2} = \sqrt{(-3)^2 + 4^2} = \sqrt{9 + 16} = 5 \][/tex]
[tex]\[ \text{Side } C''A'' = \|C - A\| = \sqrt{(2 - 2)^2 + (-3 - 1)^2} = \sqrt{0^2 + (-4)^2} = 4 \][/tex]

Since the side lengths of [tex]\(\triangle A B C\)[/tex] and [tex]\(\triangle A'' B'' C''\)[/tex] match, the triangles are congruent.

### Conclusion:
Yes, [tex]\(\triangle ABC\)[/tex] is congruent to [tex]\(\triangle A'' B'' C''\)[/tex].

Thus, we have provided complete and detailed steps to answer each part of the problem correctly.