At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, let's solve this problem step-by-step.
### Part A: Translation Description
The translation rule given is [tex]\((x, y) \rightarrow (x + 4, y - 3)\)[/tex]. This means that we need to translate each point 4 units to the right and 3 units downwards. Hence, the translation can be described in words as:
Translate 4 units to the right and 3 units downwards.
### Part B: Vertices of [tex]\(\triangle A^{\prime} B^{\prime} C^{\prime}\)[/tex]
To find the vertices of the translated triangle [tex]\(\triangle A^{\prime} B^{\prime} C^{\prime}\)[/tex], we apply the translation rule to each of the original vertices [tex]\(A(-3, 1)\)[/tex], [tex]\(B(-3, 4)\)[/tex], and [tex]\(C(-7, 1)\)[/tex].
1. For vertex [tex]\(A(-3, 1)\)[/tex]:
[tex]\[ A' = (x + 4, y - 3) = (-3 + 4, 1 - 3) = (1, -2) \][/tex]
2. For vertex [tex]\(B(-3, 4)\)[/tex]:
[tex]\[ B' = (x + 4, y - 3) = (-3 + 4, 4 - 3) = (1, 1) \][/tex]
3. For vertex [tex]\(C(-7, 1)\)[/tex]:
[tex]\[ C' = (x + 4, y - 3) = (-7 + 4, 1 - 3) = (-3, -2) \][/tex]
Therefore, the vertices are:
[tex]\[ A' = (1, -2), \quad B' = (1, 1), \quad C' = (-3, -2) \][/tex]
### Part C: Rotation of [tex]\(\triangle A^{\prime} B^{\prime} C^{\prime}\)[/tex]
Now, we rotate [tex]\(\triangle A^{\prime} B^{\prime} C^{\prime}\)[/tex] [tex]\(90^\circ\)[/tex] counterclockwise about the origin. The rotation rule for [tex]\(90^\circ\)[/tex] counterclockwise is [tex]\((x, y) \rightarrow (-y, x)\)[/tex]. We apply this to each of the vertices [tex]\(A'(1, -2)\)[/tex], [tex]\(B'(1, 1)\)[/tex], and [tex]\(C'(-3, -2)\)[/tex].
1. For vertex [tex]\(A'(1, -2)\)[/tex]:
[tex]\[ A'' = (-(-2), 1) = (2, 1) \][/tex]
2. For vertex [tex]\(B'(1, 1)\)[/tex]:
[tex]\[ B'' = (-(1), 1) = (-1, 1) \][/tex]
3. For vertex [tex]\(C'(-3, -2)\)[/tex]:
[tex]\[ C'' = (-(-2), -3) = (2, -3) \][/tex]
The vertices of the rotated [tex]\(\triangle A'' B'' C''\)[/tex] are:
[tex]\[ A'' = (2, 1), \quad B'' = (-1, 1), \quad C'' = (2, -3) \][/tex]
### Congruency Check
To determine if [tex]\(\triangle A B C\)[/tex] is congruent to [tex]\(\triangle A'' B'' C''\)[/tex], we compare the side lengths of both triangles.
1. Original triangle [tex]\(\triangle A B C\)[/tex]:
[tex]\[ \text{Side } AB = \|A - B\| = \sqrt{(-3 - (-3))^2 + (1 - 4)^2} = \sqrt{0^2 + (-3)^2} = 3 \][/tex]
[tex]\[ \text{Side } BC = \|B - C\| = \sqrt{(-3 - (-7))^2 + (4 - 1)^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = 5 \][/tex]
[tex]\[ \text{Side } CA = \|C - A\| = \sqrt{(-7 - (-3))^2 + (1 - 1)^2} = \sqrt{(-4)^2 + 0^2} = 4 \][/tex]
2. Rotated triangle [tex]\(\triangle A'' B'' C''\)[/tex]:
[tex]\[ \text{Side } A''B'' = \|A'' - B''\| = \sqrt{(2 - (-1))^2 + (1 - 1)^2} = \sqrt{3^2 + 0^2} = 3 \][/tex]
[tex]\[ \text{Side } B''C'' = \|B'' - C''\| = \sqrt{(-1 - 2)^2 + (1 - (-3))^2} = \sqrt{(-3)^2 + 4^2} = \sqrt{9 + 16} = 5 \][/tex]
[tex]\[ \text{Side } C''A'' = \|C - A\| = \sqrt{(2 - 2)^2 + (-3 - 1)^2} = \sqrt{0^2 + (-4)^2} = 4 \][/tex]
Since the side lengths of [tex]\(\triangle A B C\)[/tex] and [tex]\(\triangle A'' B'' C''\)[/tex] match, the triangles are congruent.
### Conclusion:
Yes, [tex]\(\triangle ABC\)[/tex] is congruent to [tex]\(\triangle A'' B'' C''\)[/tex].
Thus, we have provided complete and detailed steps to answer each part of the problem correctly.
### Part A: Translation Description
The translation rule given is [tex]\((x, y) \rightarrow (x + 4, y - 3)\)[/tex]. This means that we need to translate each point 4 units to the right and 3 units downwards. Hence, the translation can be described in words as:
Translate 4 units to the right and 3 units downwards.
### Part B: Vertices of [tex]\(\triangle A^{\prime} B^{\prime} C^{\prime}\)[/tex]
To find the vertices of the translated triangle [tex]\(\triangle A^{\prime} B^{\prime} C^{\prime}\)[/tex], we apply the translation rule to each of the original vertices [tex]\(A(-3, 1)\)[/tex], [tex]\(B(-3, 4)\)[/tex], and [tex]\(C(-7, 1)\)[/tex].
1. For vertex [tex]\(A(-3, 1)\)[/tex]:
[tex]\[ A' = (x + 4, y - 3) = (-3 + 4, 1 - 3) = (1, -2) \][/tex]
2. For vertex [tex]\(B(-3, 4)\)[/tex]:
[tex]\[ B' = (x + 4, y - 3) = (-3 + 4, 4 - 3) = (1, 1) \][/tex]
3. For vertex [tex]\(C(-7, 1)\)[/tex]:
[tex]\[ C' = (x + 4, y - 3) = (-7 + 4, 1 - 3) = (-3, -2) \][/tex]
Therefore, the vertices are:
[tex]\[ A' = (1, -2), \quad B' = (1, 1), \quad C' = (-3, -2) \][/tex]
### Part C: Rotation of [tex]\(\triangle A^{\prime} B^{\prime} C^{\prime}\)[/tex]
Now, we rotate [tex]\(\triangle A^{\prime} B^{\prime} C^{\prime}\)[/tex] [tex]\(90^\circ\)[/tex] counterclockwise about the origin. The rotation rule for [tex]\(90^\circ\)[/tex] counterclockwise is [tex]\((x, y) \rightarrow (-y, x)\)[/tex]. We apply this to each of the vertices [tex]\(A'(1, -2)\)[/tex], [tex]\(B'(1, 1)\)[/tex], and [tex]\(C'(-3, -2)\)[/tex].
1. For vertex [tex]\(A'(1, -2)\)[/tex]:
[tex]\[ A'' = (-(-2), 1) = (2, 1) \][/tex]
2. For vertex [tex]\(B'(1, 1)\)[/tex]:
[tex]\[ B'' = (-(1), 1) = (-1, 1) \][/tex]
3. For vertex [tex]\(C'(-3, -2)\)[/tex]:
[tex]\[ C'' = (-(-2), -3) = (2, -3) \][/tex]
The vertices of the rotated [tex]\(\triangle A'' B'' C''\)[/tex] are:
[tex]\[ A'' = (2, 1), \quad B'' = (-1, 1), \quad C'' = (2, -3) \][/tex]
### Congruency Check
To determine if [tex]\(\triangle A B C\)[/tex] is congruent to [tex]\(\triangle A'' B'' C''\)[/tex], we compare the side lengths of both triangles.
1. Original triangle [tex]\(\triangle A B C\)[/tex]:
[tex]\[ \text{Side } AB = \|A - B\| = \sqrt{(-3 - (-3))^2 + (1 - 4)^2} = \sqrt{0^2 + (-3)^2} = 3 \][/tex]
[tex]\[ \text{Side } BC = \|B - C\| = \sqrt{(-3 - (-7))^2 + (4 - 1)^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = 5 \][/tex]
[tex]\[ \text{Side } CA = \|C - A\| = \sqrt{(-7 - (-3))^2 + (1 - 1)^2} = \sqrt{(-4)^2 + 0^2} = 4 \][/tex]
2. Rotated triangle [tex]\(\triangle A'' B'' C''\)[/tex]:
[tex]\[ \text{Side } A''B'' = \|A'' - B''\| = \sqrt{(2 - (-1))^2 + (1 - 1)^2} = \sqrt{3^2 + 0^2} = 3 \][/tex]
[tex]\[ \text{Side } B''C'' = \|B'' - C''\| = \sqrt{(-1 - 2)^2 + (1 - (-3))^2} = \sqrt{(-3)^2 + 4^2} = \sqrt{9 + 16} = 5 \][/tex]
[tex]\[ \text{Side } C''A'' = \|C - A\| = \sqrt{(2 - 2)^2 + (-3 - 1)^2} = \sqrt{0^2 + (-4)^2} = 4 \][/tex]
Since the side lengths of [tex]\(\triangle A B C\)[/tex] and [tex]\(\triangle A'' B'' C''\)[/tex] match, the triangles are congruent.
### Conclusion:
Yes, [tex]\(\triangle ABC\)[/tex] is congruent to [tex]\(\triangle A'' B'' C''\)[/tex].
Thus, we have provided complete and detailed steps to answer each part of the problem correctly.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.