At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! Let's find the equilibrium constant ([tex]\( K_c \)[/tex]) for the given reaction. The reaction is:
[tex]\[ 3 O_2(g) \longleftrightarrow 2 O_3(g) \][/tex]
Given the equilibrium concentrations at [tex]\( 298 \, K \)[/tex]:
- The equilibrium concentration of [tex]\( O_2 \)[/tex] is [tex]\( [O_2] = 1.6 \times 10^{-2} \, \text{M} \)[/tex].
- The equilibrium concentration of [tex]\( O_3 \)[/tex] is [tex]\( [O_3] = 2.86 \times 10^{-20} \, \text{M} \)[/tex].
The equilibrium constant expression for the reaction is:
[tex]\[ K_c = \frac{[O_3]^2}{[O_2]^3} \][/tex]
We will substitute the given concentrations into this expression.
1. Substitute the equilibrium concentration of [tex]\( O_3 \)[/tex]:
[tex]\[ [O_3] = 2.86 \times 10^{-20} \, \text{M} \][/tex]
[tex]\[ [O_3]^2 = (2.86 \times 10^{-20} \, \text{M})^2 = 8.1796 \times 10^{-40} \, \text{M}^2 \][/tex]
2. Substitute the equilibrium concentration of [tex]\( O_2 \)[/tex]:
[tex]\[ [O_2] = 1.6 \times 10^{-2} \, \text{M} \][/tex]
[tex]\[ [O_2]^3 = (1.6 \times 10^{-2} \, \text{M})^3 = 4.096 \times 10^{-6} \, \text{M}^3 \][/tex]
3. Now, substitute these values into the equilibrium constant expression:
[tex]\[ K_c = \frac{[O_3]^2}{[O_2]^3} = \frac{8.1796 \times 10^{-40} \, \text{M}^2}{4.096 \times 10^{-6} \, \text{M}^3} \][/tex]
4. Perform the division:
[tex]\[ K_c = \frac{8.1796 \times 10^{-40}}{4.096 \times 10^{-6}} \approx 1.9969726562499997 \times 10^{-34} \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction at [tex]\( 298 \, K \)[/tex] is:
[tex]\[ K_c \approx 1.9969726562499997 \times 10^{-34} \][/tex]
That is your final answer.
[tex]\[ 3 O_2(g) \longleftrightarrow 2 O_3(g) \][/tex]
Given the equilibrium concentrations at [tex]\( 298 \, K \)[/tex]:
- The equilibrium concentration of [tex]\( O_2 \)[/tex] is [tex]\( [O_2] = 1.6 \times 10^{-2} \, \text{M} \)[/tex].
- The equilibrium concentration of [tex]\( O_3 \)[/tex] is [tex]\( [O_3] = 2.86 \times 10^{-20} \, \text{M} \)[/tex].
The equilibrium constant expression for the reaction is:
[tex]\[ K_c = \frac{[O_3]^2}{[O_2]^3} \][/tex]
We will substitute the given concentrations into this expression.
1. Substitute the equilibrium concentration of [tex]\( O_3 \)[/tex]:
[tex]\[ [O_3] = 2.86 \times 10^{-20} \, \text{M} \][/tex]
[tex]\[ [O_3]^2 = (2.86 \times 10^{-20} \, \text{M})^2 = 8.1796 \times 10^{-40} \, \text{M}^2 \][/tex]
2. Substitute the equilibrium concentration of [tex]\( O_2 \)[/tex]:
[tex]\[ [O_2] = 1.6 \times 10^{-2} \, \text{M} \][/tex]
[tex]\[ [O_2]^3 = (1.6 \times 10^{-2} \, \text{M})^3 = 4.096 \times 10^{-6} \, \text{M}^3 \][/tex]
3. Now, substitute these values into the equilibrium constant expression:
[tex]\[ K_c = \frac{[O_3]^2}{[O_2]^3} = \frac{8.1796 \times 10^{-40} \, \text{M}^2}{4.096 \times 10^{-6} \, \text{M}^3} \][/tex]
4. Perform the division:
[tex]\[ K_c = \frac{8.1796 \times 10^{-40}}{4.096 \times 10^{-6}} \approx 1.9969726562499997 \times 10^{-34} \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction at [tex]\( 298 \, K \)[/tex] is:
[tex]\[ K_c \approx 1.9969726562499997 \times 10^{-34} \][/tex]
That is your final answer.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.