Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's find the equilibrium constant ([tex]\( K_c \)[/tex]) for the given reaction. The reaction is:
[tex]\[ 3 O_2(g) \longleftrightarrow 2 O_3(g) \][/tex]
Given the equilibrium concentrations at [tex]\( 298 \, K \)[/tex]:
- The equilibrium concentration of [tex]\( O_2 \)[/tex] is [tex]\( [O_2] = 1.6 \times 10^{-2} \, \text{M} \)[/tex].
- The equilibrium concentration of [tex]\( O_3 \)[/tex] is [tex]\( [O_3] = 2.86 \times 10^{-20} \, \text{M} \)[/tex].
The equilibrium constant expression for the reaction is:
[tex]\[ K_c = \frac{[O_3]^2}{[O_2]^3} \][/tex]
We will substitute the given concentrations into this expression.
1. Substitute the equilibrium concentration of [tex]\( O_3 \)[/tex]:
[tex]\[ [O_3] = 2.86 \times 10^{-20} \, \text{M} \][/tex]
[tex]\[ [O_3]^2 = (2.86 \times 10^{-20} \, \text{M})^2 = 8.1796 \times 10^{-40} \, \text{M}^2 \][/tex]
2. Substitute the equilibrium concentration of [tex]\( O_2 \)[/tex]:
[tex]\[ [O_2] = 1.6 \times 10^{-2} \, \text{M} \][/tex]
[tex]\[ [O_2]^3 = (1.6 \times 10^{-2} \, \text{M})^3 = 4.096 \times 10^{-6} \, \text{M}^3 \][/tex]
3. Now, substitute these values into the equilibrium constant expression:
[tex]\[ K_c = \frac{[O_3]^2}{[O_2]^3} = \frac{8.1796 \times 10^{-40} \, \text{M}^2}{4.096 \times 10^{-6} \, \text{M}^3} \][/tex]
4. Perform the division:
[tex]\[ K_c = \frac{8.1796 \times 10^{-40}}{4.096 \times 10^{-6}} \approx 1.9969726562499997 \times 10^{-34} \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction at [tex]\( 298 \, K \)[/tex] is:
[tex]\[ K_c \approx 1.9969726562499997 \times 10^{-34} \][/tex]
That is your final answer.
[tex]\[ 3 O_2(g) \longleftrightarrow 2 O_3(g) \][/tex]
Given the equilibrium concentrations at [tex]\( 298 \, K \)[/tex]:
- The equilibrium concentration of [tex]\( O_2 \)[/tex] is [tex]\( [O_2] = 1.6 \times 10^{-2} \, \text{M} \)[/tex].
- The equilibrium concentration of [tex]\( O_3 \)[/tex] is [tex]\( [O_3] = 2.86 \times 10^{-20} \, \text{M} \)[/tex].
The equilibrium constant expression for the reaction is:
[tex]\[ K_c = \frac{[O_3]^2}{[O_2]^3} \][/tex]
We will substitute the given concentrations into this expression.
1. Substitute the equilibrium concentration of [tex]\( O_3 \)[/tex]:
[tex]\[ [O_3] = 2.86 \times 10^{-20} \, \text{M} \][/tex]
[tex]\[ [O_3]^2 = (2.86 \times 10^{-20} \, \text{M})^2 = 8.1796 \times 10^{-40} \, \text{M}^2 \][/tex]
2. Substitute the equilibrium concentration of [tex]\( O_2 \)[/tex]:
[tex]\[ [O_2] = 1.6 \times 10^{-2} \, \text{M} \][/tex]
[tex]\[ [O_2]^3 = (1.6 \times 10^{-2} \, \text{M})^3 = 4.096 \times 10^{-6} \, \text{M}^3 \][/tex]
3. Now, substitute these values into the equilibrium constant expression:
[tex]\[ K_c = \frac{[O_3]^2}{[O_2]^3} = \frac{8.1796 \times 10^{-40} \, \text{M}^2}{4.096 \times 10^{-6} \, \text{M}^3} \][/tex]
4. Perform the division:
[tex]\[ K_c = \frac{8.1796 \times 10^{-40}}{4.096 \times 10^{-6}} \approx 1.9969726562499997 \times 10^{-34} \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction at [tex]\( 298 \, K \)[/tex] is:
[tex]\[ K_c \approx 1.9969726562499997 \times 10^{-34} \][/tex]
That is your final answer.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.