Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's find the equilibrium constant ([tex]\( K_c \)[/tex]) for the given reaction. The reaction is:
[tex]\[ 3 O_2(g) \longleftrightarrow 2 O_3(g) \][/tex]
Given the equilibrium concentrations at [tex]\( 298 \, K \)[/tex]:
- The equilibrium concentration of [tex]\( O_2 \)[/tex] is [tex]\( [O_2] = 1.6 \times 10^{-2} \, \text{M} \)[/tex].
- The equilibrium concentration of [tex]\( O_3 \)[/tex] is [tex]\( [O_3] = 2.86 \times 10^{-20} \, \text{M} \)[/tex].
The equilibrium constant expression for the reaction is:
[tex]\[ K_c = \frac{[O_3]^2}{[O_2]^3} \][/tex]
We will substitute the given concentrations into this expression.
1. Substitute the equilibrium concentration of [tex]\( O_3 \)[/tex]:
[tex]\[ [O_3] = 2.86 \times 10^{-20} \, \text{M} \][/tex]
[tex]\[ [O_3]^2 = (2.86 \times 10^{-20} \, \text{M})^2 = 8.1796 \times 10^{-40} \, \text{M}^2 \][/tex]
2. Substitute the equilibrium concentration of [tex]\( O_2 \)[/tex]:
[tex]\[ [O_2] = 1.6 \times 10^{-2} \, \text{M} \][/tex]
[tex]\[ [O_2]^3 = (1.6 \times 10^{-2} \, \text{M})^3 = 4.096 \times 10^{-6} \, \text{M}^3 \][/tex]
3. Now, substitute these values into the equilibrium constant expression:
[tex]\[ K_c = \frac{[O_3]^2}{[O_2]^3} = \frac{8.1796 \times 10^{-40} \, \text{M}^2}{4.096 \times 10^{-6} \, \text{M}^3} \][/tex]
4. Perform the division:
[tex]\[ K_c = \frac{8.1796 \times 10^{-40}}{4.096 \times 10^{-6}} \approx 1.9969726562499997 \times 10^{-34} \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction at [tex]\( 298 \, K \)[/tex] is:
[tex]\[ K_c \approx 1.9969726562499997 \times 10^{-34} \][/tex]
That is your final answer.
[tex]\[ 3 O_2(g) \longleftrightarrow 2 O_3(g) \][/tex]
Given the equilibrium concentrations at [tex]\( 298 \, K \)[/tex]:
- The equilibrium concentration of [tex]\( O_2 \)[/tex] is [tex]\( [O_2] = 1.6 \times 10^{-2} \, \text{M} \)[/tex].
- The equilibrium concentration of [tex]\( O_3 \)[/tex] is [tex]\( [O_3] = 2.86 \times 10^{-20} \, \text{M} \)[/tex].
The equilibrium constant expression for the reaction is:
[tex]\[ K_c = \frac{[O_3]^2}{[O_2]^3} \][/tex]
We will substitute the given concentrations into this expression.
1. Substitute the equilibrium concentration of [tex]\( O_3 \)[/tex]:
[tex]\[ [O_3] = 2.86 \times 10^{-20} \, \text{M} \][/tex]
[tex]\[ [O_3]^2 = (2.86 \times 10^{-20} \, \text{M})^2 = 8.1796 \times 10^{-40} \, \text{M}^2 \][/tex]
2. Substitute the equilibrium concentration of [tex]\( O_2 \)[/tex]:
[tex]\[ [O_2] = 1.6 \times 10^{-2} \, \text{M} \][/tex]
[tex]\[ [O_2]^3 = (1.6 \times 10^{-2} \, \text{M})^3 = 4.096 \times 10^{-6} \, \text{M}^3 \][/tex]
3. Now, substitute these values into the equilibrium constant expression:
[tex]\[ K_c = \frac{[O_3]^2}{[O_2]^3} = \frac{8.1796 \times 10^{-40} \, \text{M}^2}{4.096 \times 10^{-6} \, \text{M}^3} \][/tex]
4. Perform the division:
[tex]\[ K_c = \frac{8.1796 \times 10^{-40}}{4.096 \times 10^{-6}} \approx 1.9969726562499997 \times 10^{-34} \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction at [tex]\( 298 \, K \)[/tex] is:
[tex]\[ K_c \approx 1.9969726562499997 \times 10^{-34} \][/tex]
That is your final answer.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.