Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's solve the problem step-by-step.
1. Understanding the Problem:
We need to find the probability that the sum of the numbers rolled on two dice is [tex]\(7\)[/tex].
2. Total Possible Outcomes:
Each die has 6 faces, labeled from 1 to 6. When rolling two dice, the total number of possible outcomes is the product of the number of faces on each die:
[tex]\[ \text{Total possible outcomes} = 6 \times 6 = 36 \][/tex]
3. Favorable Outcomes:
We need to determine how many outcomes result in the sum being [tex]\(7\)[/tex]. These outcomes are:
[tex]\[ (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) \][/tex]
There are 6 such outcomes.
4. Calculate the Probability:
The probability of an event is given by the ratio of the number of favorable outcomes to the total number of possible outcomes:
[tex]\[ \text{Probability} = \frac{\text{Number of favorable outcomes}}{\text{Total number of possible outcomes}} \][/tex]
Substituting the values, we get:
[tex]\[ \text{Probability} = \frac{6}{36} = \frac{1}{6} \][/tex]
Therefore, the probability that the sum of the numbers rolled is [tex]\(7\)[/tex] is [tex]\( \frac{1}{6} \)[/tex].
So, the answer is:
[tex]\[ \boxed{\frac{1}{6}} \][/tex]
Hence, the correct option is C) [tex]\( \frac{1}{6} \)[/tex].
1. Understanding the Problem:
We need to find the probability that the sum of the numbers rolled on two dice is [tex]\(7\)[/tex].
2. Total Possible Outcomes:
Each die has 6 faces, labeled from 1 to 6. When rolling two dice, the total number of possible outcomes is the product of the number of faces on each die:
[tex]\[ \text{Total possible outcomes} = 6 \times 6 = 36 \][/tex]
3. Favorable Outcomes:
We need to determine how many outcomes result in the sum being [tex]\(7\)[/tex]. These outcomes are:
[tex]\[ (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) \][/tex]
There are 6 such outcomes.
4. Calculate the Probability:
The probability of an event is given by the ratio of the number of favorable outcomes to the total number of possible outcomes:
[tex]\[ \text{Probability} = \frac{\text{Number of favorable outcomes}}{\text{Total number of possible outcomes}} \][/tex]
Substituting the values, we get:
[tex]\[ \text{Probability} = \frac{6}{36} = \frac{1}{6} \][/tex]
Therefore, the probability that the sum of the numbers rolled is [tex]\(7\)[/tex] is [tex]\( \frac{1}{6} \)[/tex].
So, the answer is:
[tex]\[ \boxed{\frac{1}{6}} \][/tex]
Hence, the correct option is C) [tex]\( \frac{1}{6} \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.