Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Which reciprocal ratio is adjacent side over opposite side?

A. cosecant
B. tangent
C. secant
D. cotangent


Sagot :

To determine which reciprocal ratio represents the adjacent side over the opposite side in a right-angled triangle, we need to understand the definitions of the basic trigonometric functions and their reciprocals.

1. Sine (sin): The ratio of the opposite side to the hypotenuse.
[tex]\[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \][/tex]

2. Cosine (cos): The ratio of the adjacent side to the hypotenuse.
[tex]\[ \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \][/tex]

3. Tangent (tan): The ratio of the opposite side to the adjacent side.
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]

Next, we look at the reciprocal functions:

1. Cosecant (csc): The reciprocal of sine.
[tex]\[ \csc(\theta) = \frac{1}{\sin(\theta)} = \frac{\text{hypotenuse}}{\text{opposite}} \][/tex]

2. Secant (sec): The reciprocal of cosine.
[tex]\[ \sec(\theta) = \frac{1}{\cos(\theta)} = \frac{\text{hypotenuse}}{\text{adjacent}} \][/tex]

3. Cotangent (cot): The reciprocal of tangent.
[tex]\[ \cot(\theta) = \frac{1}{\tan(\theta)} = \frac{\text{adjacent}}{\text{opposite}} \][/tex]

Given these definitions, the reciprocal ratio that represents the adjacent side over the opposite side is cotangent.

Thus, the correct answer is:
O cotangent