Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the first three terms of the geometric sequence given by the expression
[tex]\[ 6 \times 3^{n-1} \][/tex]
we will substitute [tex]\( n \)[/tex] with the values 1, 2, and 3.
1. First Term:
Substitute [tex]\( n = 1 \)[/tex] into the expression:
[tex]\[ 6 \times 3^{1-1} \][/tex]
Since [tex]\( 1-1\)[/tex] equals 0 , we have:
[tex]\[ 6 \times 3^0 \][/tex]
We know that any number raised to the power of 0 is 1:
[tex]\[ 3^0 = 1 \][/tex]
Thus, the first term is:
[tex]\[ 6 \times 1 = 6 \][/tex]
2. Second Term:
Substitute [tex]\( n = 2 \)[/tex] into the expression:
[tex]\[ 6 \times 3^{2-1} \][/tex]
Since [tex]\( 2-1\)[/tex] equals 1 , we have:
[tex]\[ 6 \times 3^1 \][/tex]
We know that any number raised to the power of 1 remains the same:
[tex]\[ 3^1 = 3 \][/tex]
Thus, the second term is:
[tex]\[ 6 \times 3 = 18 \][/tex]
3. Third Term:
Substitute [tex]\( n = 3 \)[/tex] into the expression:
[tex]\[ 6 \times 3^{3-1} \][/tex]
Since [tex]\( 3-1\)[/tex] equals 2 , we have:
[tex]\[ 6 \times 3^2 \][/tex]
We know that [tex]\( 3^2 = 3 \times 3 = 9 \)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]
Thus, the third term is:
[tex]\[ 6 \times 9 = 54 \][/tex]
Therefore, the first three terms of the sequence are:
[tex]\[ 6, 18, 54 \][/tex]
[tex]\[ 6 \times 3^{n-1} \][/tex]
we will substitute [tex]\( n \)[/tex] with the values 1, 2, and 3.
1. First Term:
Substitute [tex]\( n = 1 \)[/tex] into the expression:
[tex]\[ 6 \times 3^{1-1} \][/tex]
Since [tex]\( 1-1\)[/tex] equals 0 , we have:
[tex]\[ 6 \times 3^0 \][/tex]
We know that any number raised to the power of 0 is 1:
[tex]\[ 3^0 = 1 \][/tex]
Thus, the first term is:
[tex]\[ 6 \times 1 = 6 \][/tex]
2. Second Term:
Substitute [tex]\( n = 2 \)[/tex] into the expression:
[tex]\[ 6 \times 3^{2-1} \][/tex]
Since [tex]\( 2-1\)[/tex] equals 1 , we have:
[tex]\[ 6 \times 3^1 \][/tex]
We know that any number raised to the power of 1 remains the same:
[tex]\[ 3^1 = 3 \][/tex]
Thus, the second term is:
[tex]\[ 6 \times 3 = 18 \][/tex]
3. Third Term:
Substitute [tex]\( n = 3 \)[/tex] into the expression:
[tex]\[ 6 \times 3^{3-1} \][/tex]
Since [tex]\( 3-1\)[/tex] equals 2 , we have:
[tex]\[ 6 \times 3^2 \][/tex]
We know that [tex]\( 3^2 = 3 \times 3 = 9 \)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]
Thus, the third term is:
[tex]\[ 6 \times 9 = 54 \][/tex]
Therefore, the first three terms of the sequence are:
[tex]\[ 6, 18, 54 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.