At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

An expression for the nth term of a geometric sequence is:

[tex]\[ 6 \times 3^{n-1} \][/tex]

Write down the first 3 terms of this sequence.


Sagot :

To determine the first three terms of the geometric sequence given by the expression
[tex]\[ 6 \times 3^{n-1} \][/tex]
we will substitute [tex]\( n \)[/tex] with the values 1, 2, and 3.

1. First Term:

Substitute [tex]\( n = 1 \)[/tex] into the expression:
[tex]\[ 6 \times 3^{1-1} \][/tex]

Since [tex]\( 1-1\)[/tex] equals 0 , we have:
[tex]\[ 6 \times 3^0 \][/tex]

We know that any number raised to the power of 0 is 1:
[tex]\[ 3^0 = 1 \][/tex]

Thus, the first term is:
[tex]\[ 6 \times 1 = 6 \][/tex]

2. Second Term:

Substitute [tex]\( n = 2 \)[/tex] into the expression:
[tex]\[ 6 \times 3^{2-1} \][/tex]

Since [tex]\( 2-1\)[/tex] equals 1 , we have:
[tex]\[ 6 \times 3^1 \][/tex]

We know that any number raised to the power of 1 remains the same:
[tex]\[ 3^1 = 3 \][/tex]

Thus, the second term is:
[tex]\[ 6 \times 3 = 18 \][/tex]

3. Third Term:

Substitute [tex]\( n = 3 \)[/tex] into the expression:
[tex]\[ 6 \times 3^{3-1} \][/tex]

Since [tex]\( 3-1\)[/tex] equals 2 , we have:
[tex]\[ 6 \times 3^2 \][/tex]

We know that [tex]\( 3^2 = 3 \times 3 = 9 \)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]

Thus, the third term is:
[tex]\[ 6 \times 9 = 54 \][/tex]

Therefore, the first three terms of the sequence are:
[tex]\[ 6, 18, 54 \][/tex]