Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine whether the function [tex]\( f(x) = 4\left(\frac{1}{3}\right)^x \)[/tex] represents growth or decay and to find the [tex]\( y \)[/tex]-intercept, we need to analyze the structure of the function and its components.
1. Identify the Base and Coefficient:
- The given function is [tex]\( f(x) = 4\left(\frac{1}{3}\right)^x \)[/tex].
- The base of the exponential expression is [tex]\( \frac{1}{3} \)[/tex].
- The coefficient is 4.
2. Determine Growth or Decay:
- In an exponential function of the form [tex]\( g(x) = a \cdot b^x \)[/tex], if [tex]\( b \)[/tex] (the base) is between 0 and 1, the function represents exponential decay.
- Here, the base [tex]\( \frac{1}{3} \)[/tex] is between 0 and 1.
- Therefore, the function [tex]\( f(x) = 4\left(\frac{1}{3}\right)^x \)[/tex] represents decay.
3. Find the [tex]\( y \)[/tex]-Intercept:
- The [tex]\( y \)[/tex]-intercept of a function is found by evaluating the function at [tex]\( x = 0 \)[/tex].
- Plugging in [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 4\left(\frac{1}{3}\right)^0 \][/tex]
- Any number raised to the power of 0 is 1, so:
[tex]\[ \left(\frac{1}{3}\right)^0 = 1 \][/tex]
- Thus:
[tex]\[ f(0) = 4 \cdot 1 = 4 \][/tex]
- Therefore, the [tex]\( y \)[/tex]-intercept is [tex]\( (0, 4) \)[/tex].
Putting it all together:
- The function [tex]\( f(x) \)[/tex] represents decay.
- The [tex]\( y \)[/tex]-intercept is [tex]\( (0, 4) \)[/tex].
The correct answer is:
Decay; [tex]\( (0, 4) \)[/tex]
1. Identify the Base and Coefficient:
- The given function is [tex]\( f(x) = 4\left(\frac{1}{3}\right)^x \)[/tex].
- The base of the exponential expression is [tex]\( \frac{1}{3} \)[/tex].
- The coefficient is 4.
2. Determine Growth or Decay:
- In an exponential function of the form [tex]\( g(x) = a \cdot b^x \)[/tex], if [tex]\( b \)[/tex] (the base) is between 0 and 1, the function represents exponential decay.
- Here, the base [tex]\( \frac{1}{3} \)[/tex] is between 0 and 1.
- Therefore, the function [tex]\( f(x) = 4\left(\frac{1}{3}\right)^x \)[/tex] represents decay.
3. Find the [tex]\( y \)[/tex]-Intercept:
- The [tex]\( y \)[/tex]-intercept of a function is found by evaluating the function at [tex]\( x = 0 \)[/tex].
- Plugging in [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 4\left(\frac{1}{3}\right)^0 \][/tex]
- Any number raised to the power of 0 is 1, so:
[tex]\[ \left(\frac{1}{3}\right)^0 = 1 \][/tex]
- Thus:
[tex]\[ f(0) = 4 \cdot 1 = 4 \][/tex]
- Therefore, the [tex]\( y \)[/tex]-intercept is [tex]\( (0, 4) \)[/tex].
Putting it all together:
- The function [tex]\( f(x) \)[/tex] represents decay.
- The [tex]\( y \)[/tex]-intercept is [tex]\( (0, 4) \)[/tex].
The correct answer is:
Decay; [tex]\( (0, 4) \)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.