Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Two parallel plates of area [tex][tex]$5.68 \cdot 10^{-4} m^2$[/tex][/tex] have equal and opposite charges of [tex][tex]$8.38 \cdot 10^{-11} C$[/tex][/tex] placed on them.

What is the electric field between the plates?

[?] N/C


Sagot :

Certainly! Let's proceed step-by-step to find the electric field between the two parallel plates.

1. Identify the given values:
- Area of each plate, [tex]\( A = 5.68 \times 10^{-4} \, \text{m}^2 \)[/tex]
- Charge on the plates, [tex]\( Q = 8.38 \times 10^{-11} \, \text{C} \)[/tex]
- Permittivity of free space, [tex]\( \epsilon_0 = 8.854187817 \times 10^{-12} \, \text{F/m} \)[/tex] (Farads per meter)

2. Determine the surface charge density:
[tex]\[ \sigma = \frac{Q}{A} \][/tex]
where [tex]\(\sigma\)[/tex] is the surface charge density (charge per unit area).

Plugging in the values:
[tex]\[ \sigma = \frac{8.38 \times 10^{-11} \, \text{C}}{5.68 \times 10^{-4} \, \text{m}^2} = 1.475352112676056 \times 10^{-7} \, \text{C/m}^2 \][/tex]

3. Calculate the electric field [tex]\( E \)[/tex]:
The electric field [tex]\( E \)[/tex] between the plates is given by the formula:
[tex]\[ E = \frac{\sigma}{\epsilon_0} \][/tex]

Substituting the values:
[tex]\[ E = \frac{1.475352112676056 \times 10^{-7} \, \text{C/m}^2}{8.854187817 \times 10^{-12} \, \text{F/m}} \][/tex]
[tex]\[ E = 16662.76052833877 \, \text{N/C} \][/tex]

Therefore, the electric field between the plates is [tex]\( 16662.76052833877 \, \text{N/C} \)[/tex].