Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Ask your questions and receive precise answers from experienced professionals across different disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's analyze the step-by-step simplification of the expression [tex]\((x+5) \cdot 2 + 7\)[/tex]:
1. Distributive Property:
The first step involves applying the distributive property to expand [tex]\((x+5) \cdot 2\)[/tex] into [tex]\(2(x+5)\)[/tex]:
[tex]\[ (x+5) \cdot 2 = 2(x+5) \][/tex]
[tex]\[ 2(x+5) + 7 \][/tex]
2. Distributive Property:
Next, we distribute the 2 over the terms inside the parentheses:
[tex]\[ 2(x+5) = 2x + 2 \cdot 5 = 2x + 10 \][/tex]
[tex]\[ 2x + 10 + 7 \][/tex]
3. Associative Property of Addition:
We now group [tex]\(10\)[/tex] and [tex]\(7\)[/tex] together using the associative property of addition:
[tex]\[ 2x + (10 + 7) \][/tex]
4. Addition:
We then simplify [tex]\(10 + 7\)[/tex] to get:
[tex]\[ 2x + 17 \][/tex]
Now, let’s examine the properties used in each step:
- Distributive Property: Used to break down [tex]\(2(x+5)\)[/tex] into [tex]\(2x + 10\)[/tex].
- Associative Property of Addition: Used to regroup and combine [tex]\(10 + 7\)[/tex].
- Commutative Property of Addition: Although reordering of terms doesn't explicitly occur, addition can be commutative, such as combining [tex]\(10 + 7\)[/tex] (where order doesn't matter).
The property that is NOT used in this simplification process is:
- Commutative Property of Multiplication: This property states that the order in which you multiply numbers does not change the product (i.e., [tex]\(a \cdot b = b \cdot a\)[/tex]). This property is not employed in any of the steps described above for the given expression.
Thus, the property not used to simplify the expression [tex]\((x+5) \cdot 2 + 7\)[/tex] is the commutative property of multiplication.
1. Distributive Property:
The first step involves applying the distributive property to expand [tex]\((x+5) \cdot 2\)[/tex] into [tex]\(2(x+5)\)[/tex]:
[tex]\[ (x+5) \cdot 2 = 2(x+5) \][/tex]
[tex]\[ 2(x+5) + 7 \][/tex]
2. Distributive Property:
Next, we distribute the 2 over the terms inside the parentheses:
[tex]\[ 2(x+5) = 2x + 2 \cdot 5 = 2x + 10 \][/tex]
[tex]\[ 2x + 10 + 7 \][/tex]
3. Associative Property of Addition:
We now group [tex]\(10\)[/tex] and [tex]\(7\)[/tex] together using the associative property of addition:
[tex]\[ 2x + (10 + 7) \][/tex]
4. Addition:
We then simplify [tex]\(10 + 7\)[/tex] to get:
[tex]\[ 2x + 17 \][/tex]
Now, let’s examine the properties used in each step:
- Distributive Property: Used to break down [tex]\(2(x+5)\)[/tex] into [tex]\(2x + 10\)[/tex].
- Associative Property of Addition: Used to regroup and combine [tex]\(10 + 7\)[/tex].
- Commutative Property of Addition: Although reordering of terms doesn't explicitly occur, addition can be commutative, such as combining [tex]\(10 + 7\)[/tex] (where order doesn't matter).
The property that is NOT used in this simplification process is:
- Commutative Property of Multiplication: This property states that the order in which you multiply numbers does not change the product (i.e., [tex]\(a \cdot b = b \cdot a\)[/tex]). This property is not employed in any of the steps described above for the given expression.
Thus, the property not used to simplify the expression [tex]\((x+5) \cdot 2 + 7\)[/tex] is the commutative property of multiplication.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.