Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which properties can be used to rewrite the expression [tex]\(\left(\frac{2}{3} \cdot \frac{1}{5}\right) \cdot \frac{5}{2}\)[/tex] as [tex]\(\frac{2}{3} \cdot \left(\frac{5}{2} \cdot \frac{1}{5}\right)\)[/tex], let's explore the properties involved.
1. Commutative Property of Multiplication:
This property states that the order in which two numbers are multiplied does not affect the product. In other words, [tex]\(a \cdot b = b \cdot a\)[/tex].
2. Associative Property of Multiplication:
This property states that the way in which numbers are grouped in a multiplication problem does not affect the product. In other words, [tex]\((a \cdot b) \cdot c = a \cdot (b \cdot c)\)[/tex].
Let's start by examining the given expression [tex]\(\left(\frac{2}{3} \cdot \frac{1}{5}\right) \cdot \frac{5}{2}\)[/tex] and how we can manipulate it using these properties.
First, we'll apply the Commutative Property of Multiplication to change the order of [tex]\(\frac{1}{5}\)[/tex] and [tex]\(\frac{5}{2}\)[/tex]:
[tex]\[ \left(\frac{2}{3} \cdot \frac{1}{5}\right) \cdot \frac{5}{2} = \left(\frac{2}{3} \cdot \frac{5}{2}\right) \cdot \frac{1}{5} \][/tex]
Next, we will observe that the new form can still be manipulated further. Apply the Associative Property of Multiplication to change the grouping:
[tex]\[ \left(\frac{2}{3} \cdot \frac{5}{2}\right) \cdot \frac{1}{5} = \frac{2}{3} \cdot \left(\frac{5}{2} \cdot \frac{1}{5}\right) \][/tex]
To summarize, the expression [tex]\(\left(\frac{2}{3} \cdot \frac{1}{5}\right) \cdot \frac{5}{2}\)[/tex] has been rewritten as [tex]\(\frac{2}{3} \cdot \left(\frac{5}{2} \cdot \frac{1}{5}\right)\)[/tex]:
1. Using the Commutative Property to switch the order.
2. Applying the Associative Property to regroup the factors.
Therefore, the properties used to rewrite the expression are:
> The commutative property used twice.
1. Commutative Property of Multiplication:
This property states that the order in which two numbers are multiplied does not affect the product. In other words, [tex]\(a \cdot b = b \cdot a\)[/tex].
2. Associative Property of Multiplication:
This property states that the way in which numbers are grouped in a multiplication problem does not affect the product. In other words, [tex]\((a \cdot b) \cdot c = a \cdot (b \cdot c)\)[/tex].
Let's start by examining the given expression [tex]\(\left(\frac{2}{3} \cdot \frac{1}{5}\right) \cdot \frac{5}{2}\)[/tex] and how we can manipulate it using these properties.
First, we'll apply the Commutative Property of Multiplication to change the order of [tex]\(\frac{1}{5}\)[/tex] and [tex]\(\frac{5}{2}\)[/tex]:
[tex]\[ \left(\frac{2}{3} \cdot \frac{1}{5}\right) \cdot \frac{5}{2} = \left(\frac{2}{3} \cdot \frac{5}{2}\right) \cdot \frac{1}{5} \][/tex]
Next, we will observe that the new form can still be manipulated further. Apply the Associative Property of Multiplication to change the grouping:
[tex]\[ \left(\frac{2}{3} \cdot \frac{5}{2}\right) \cdot \frac{1}{5} = \frac{2}{3} \cdot \left(\frac{5}{2} \cdot \frac{1}{5}\right) \][/tex]
To summarize, the expression [tex]\(\left(\frac{2}{3} \cdot \frac{1}{5}\right) \cdot \frac{5}{2}\)[/tex] has been rewritten as [tex]\(\frac{2}{3} \cdot \left(\frac{5}{2} \cdot \frac{1}{5}\right)\)[/tex]:
1. Using the Commutative Property to switch the order.
2. Applying the Associative Property to regroup the factors.
Therefore, the properties used to rewrite the expression are:
> The commutative property used twice.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.