At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! Let's start by analyzing the problem using the values provided and Newton's law of gravitation to calculate the theoretical gravitational force.
### Step 1: Setup Initial Values
Given:
- Mass of the first object, [tex]\( m_1 = 2 \times 10^9 \, \text{kg} \)[/tex]
- Distance between the objects, [tex]\( r = 5 \, \text{km} = 5 \times 10^3 \, \text{m} \)[/tex]
### Step 2: Mass of Object 2 and Gravitational Forces
We are provided a table of different [tex]\( m_2 \)[/tex] values in [tex]\( 10^9 \, \text{kg} \)[/tex] and corresponding recorded gravitational forces.
### Step 3: Record Table
Let's fill in the provided table with the given values.
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline $m_1=2 \times 10^9 \, \text{kg}$ & $m_1 \times m_2$ & $r = 5 \, \text{km}$ & $r^2 \, (\text{m}^2)$ \\ \hline $m_2 \, (\times 10^9 \, \text{kg})$ & $(\text{kg}^2)$ & $F_G \, (\text{N})$ & $F_G \, (\text{N})$ \\ \hline 10 & $2 \times 10^{18}$ & 53.4 & 53.3944 \\ \hline 9 & $1.8 \times 10^{18}$ & 48.1 & 48.05496 \\ \hline 8 & $1.6 \times 10^{18}$ & 42.7 & 42.71552 \\ \hline 7 & $1.4 \times 10^{18}$ & 37.4 & 37.37608 \\ \hline 6 & $1.2 \times 10^{18}$ & 32 & 32.03664 \\ \hline 5 & $1 \times 10^{18}$ & 26.7 & 26.6972 \\ \hline 4 & $0.8 \times 10^{18}$ & 21.4 & 21.35776 \\ \hline 3 & $0.6 \times 10^{18}$ & 16 & 16.01832 \\ \hline \end{tabular} \][/tex]
### Explanation of Steps:
1. Calculate Mass Multiplication [tex]\( m_1 \times m_2 \)[/tex]:
- For each [tex]\( m_2 \)[/tex], compute [tex]\( m_1 \times m_2 \)[/tex] in [tex]\( \text{kg}^2 \)[/tex].
2. Calculate Gravitational Force:
- Use Newton's law of gravitation to calculate the theoretical gravitational force:
[tex]\[ F_G = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
Where [tex]\( G = 6.67430 \times 10^{-11} \, \text{N} \cdot \left(\text{m}^2 / \text{kg}^2\right) \)[/tex].
### Summary of Results:
The final theoretical forces were calculated for each [tex]\( m_2 \)[/tex], and these values are, respectively:
- 10: Theoretical Force [tex]\( \approx 53.3944 \, \text{N} \)[/tex]
- 9: Theoretical Force [tex]\( \approx 48.05496 \, \text{N} \)[/tex]
- 8: Theoretical Force [tex]\( \approx 42.71552 \, \text{N} \)[/tex]
- 7: Theoretical Force [tex]\( \approx 37.37608 \, \text{N} \)[/tex]
- 6: Theoretical Force [tex]\( \approx 32.03664 \, \text{N} \)[/tex]
- 5: Theoretical Force [tex]\( \approx 26.6972 \, \text{N} \)[/tex]
- 4: Theoretical Force [tex]\( \approx 21.35776 \, \text{N} \)[/tex]
- 3: Theoretical Force [tex]\( \approx 16.01832 \, \text{N} \)[/tex]
### Conclusion:
This analysis confirms that the recorded gravitational forces correspond well with the theoretical values calculated using Newton's law of gravitation.
### Step 1: Setup Initial Values
Given:
- Mass of the first object, [tex]\( m_1 = 2 \times 10^9 \, \text{kg} \)[/tex]
- Distance between the objects, [tex]\( r = 5 \, \text{km} = 5 \times 10^3 \, \text{m} \)[/tex]
### Step 2: Mass of Object 2 and Gravitational Forces
We are provided a table of different [tex]\( m_2 \)[/tex] values in [tex]\( 10^9 \, \text{kg} \)[/tex] and corresponding recorded gravitational forces.
### Step 3: Record Table
Let's fill in the provided table with the given values.
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline $m_1=2 \times 10^9 \, \text{kg}$ & $m_1 \times m_2$ & $r = 5 \, \text{km}$ & $r^2 \, (\text{m}^2)$ \\ \hline $m_2 \, (\times 10^9 \, \text{kg})$ & $(\text{kg}^2)$ & $F_G \, (\text{N})$ & $F_G \, (\text{N})$ \\ \hline 10 & $2 \times 10^{18}$ & 53.4 & 53.3944 \\ \hline 9 & $1.8 \times 10^{18}$ & 48.1 & 48.05496 \\ \hline 8 & $1.6 \times 10^{18}$ & 42.7 & 42.71552 \\ \hline 7 & $1.4 \times 10^{18}$ & 37.4 & 37.37608 \\ \hline 6 & $1.2 \times 10^{18}$ & 32 & 32.03664 \\ \hline 5 & $1 \times 10^{18}$ & 26.7 & 26.6972 \\ \hline 4 & $0.8 \times 10^{18}$ & 21.4 & 21.35776 \\ \hline 3 & $0.6 \times 10^{18}$ & 16 & 16.01832 \\ \hline \end{tabular} \][/tex]
### Explanation of Steps:
1. Calculate Mass Multiplication [tex]\( m_1 \times m_2 \)[/tex]:
- For each [tex]\( m_2 \)[/tex], compute [tex]\( m_1 \times m_2 \)[/tex] in [tex]\( \text{kg}^2 \)[/tex].
2. Calculate Gravitational Force:
- Use Newton's law of gravitation to calculate the theoretical gravitational force:
[tex]\[ F_G = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
Where [tex]\( G = 6.67430 \times 10^{-11} \, \text{N} \cdot \left(\text{m}^2 / \text{kg}^2\right) \)[/tex].
### Summary of Results:
The final theoretical forces were calculated for each [tex]\( m_2 \)[/tex], and these values are, respectively:
- 10: Theoretical Force [tex]\( \approx 53.3944 \, \text{N} \)[/tex]
- 9: Theoretical Force [tex]\( \approx 48.05496 \, \text{N} \)[/tex]
- 8: Theoretical Force [tex]\( \approx 42.71552 \, \text{N} \)[/tex]
- 7: Theoretical Force [tex]\( \approx 37.37608 \, \text{N} \)[/tex]
- 6: Theoretical Force [tex]\( \approx 32.03664 \, \text{N} \)[/tex]
- 5: Theoretical Force [tex]\( \approx 26.6972 \, \text{N} \)[/tex]
- 4: Theoretical Force [tex]\( \approx 21.35776 \, \text{N} \)[/tex]
- 3: Theoretical Force [tex]\( \approx 16.01832 \, \text{N} \)[/tex]
### Conclusion:
This analysis confirms that the recorded gravitational forces correspond well with the theoretical values calculated using Newton's law of gravitation.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.