Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the simultaneous equations:
[tex]\[ \begin{aligned} x^2 + y^2 &= 13 \\ x &= y - 5 \end{aligned} \][/tex]
We can follow these steps:
1. Substitute the second equation into the first equation:
Given [tex]\(x = y - 5\)[/tex], we substitute [tex]\(x\)[/tex] in the first equation:
[tex]\[ (y - 5)^2 + y^2 = 13 \][/tex]
2. Expand and simplify:
Expand [tex]\((y - 5)^2\)[/tex]:
[tex]\[ y^2 - 10y + 25 + y^2 = 13 \][/tex]
Combine like terms:
[tex]\[ 2y^2 - 10y + 25 = 13 \][/tex]
Subtract 13 from both sides:
[tex]\[ 2y^2 - 10y + 12 = 0 \][/tex]
3. Simplify the quadratic equation:
Divide the entire equation by 2 to simplify:
[tex]\[ y^2 - 5y + 6 = 0 \][/tex]
4. Factor the quadratic equation:
We need to find factors of 6 that add up to -5. The factors are -2 and -3.
[tex]\[ (y - 2)(y - 3) = 0 \][/tex]
5. Solve for [tex]\(y\)[/tex]:
Set each factor equal to zero and solve for [tex]\(y\)[/tex]:
[tex]\[ y - 2 = 0 \quad \Rightarrow \quad y = 2 \][/tex]
[tex]\[ y - 3 = 0 \quad \Rightarrow \quad y = 3 \][/tex]
6. Find the corresponding [tex]\(x\)[/tex] values:
Using the second original equation [tex]\(x = y - 5\)[/tex]:
- For [tex]\(y = 2\)[/tex], [tex]\(x = 2 - 5 = -3\)[/tex].
- For [tex]\(y = 3\)[/tex], [tex]\(x = 3 - 5 = -2\)[/tex].
Therefore, the solutions to the simultaneous equations are:
[tex]\[ (x, y) = (-3, 2) \quad \text{and} \quad (x, y) = (-2, 3) \][/tex]
[tex]\[ \begin{aligned} x^2 + y^2 &= 13 \\ x &= y - 5 \end{aligned} \][/tex]
We can follow these steps:
1. Substitute the second equation into the first equation:
Given [tex]\(x = y - 5\)[/tex], we substitute [tex]\(x\)[/tex] in the first equation:
[tex]\[ (y - 5)^2 + y^2 = 13 \][/tex]
2. Expand and simplify:
Expand [tex]\((y - 5)^2\)[/tex]:
[tex]\[ y^2 - 10y + 25 + y^2 = 13 \][/tex]
Combine like terms:
[tex]\[ 2y^2 - 10y + 25 = 13 \][/tex]
Subtract 13 from both sides:
[tex]\[ 2y^2 - 10y + 12 = 0 \][/tex]
3. Simplify the quadratic equation:
Divide the entire equation by 2 to simplify:
[tex]\[ y^2 - 5y + 6 = 0 \][/tex]
4. Factor the quadratic equation:
We need to find factors of 6 that add up to -5. The factors are -2 and -3.
[tex]\[ (y - 2)(y - 3) = 0 \][/tex]
5. Solve for [tex]\(y\)[/tex]:
Set each factor equal to zero and solve for [tex]\(y\)[/tex]:
[tex]\[ y - 2 = 0 \quad \Rightarrow \quad y = 2 \][/tex]
[tex]\[ y - 3 = 0 \quad \Rightarrow \quad y = 3 \][/tex]
6. Find the corresponding [tex]\(x\)[/tex] values:
Using the second original equation [tex]\(x = y - 5\)[/tex]:
- For [tex]\(y = 2\)[/tex], [tex]\(x = 2 - 5 = -3\)[/tex].
- For [tex]\(y = 3\)[/tex], [tex]\(x = 3 - 5 = -2\)[/tex].
Therefore, the solutions to the simultaneous equations are:
[tex]\[ (x, y) = (-3, 2) \quad \text{and} \quad (x, y) = (-2, 3) \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.