Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's calculate the volume of an oblique square pyramid step-by-step.
1. Understand the formula for the volume of a pyramid:
The volume [tex]\( V \)[/tex] of a pyramid is given by the formula:
[tex]\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
2. Identify the given values:
- The base edge of the square pyramid is [tex]\( x \)[/tex] cm.
- The height of the pyramid is [tex]\( 9 \)[/tex] cm.
3. Calculate the base area:
Since the base is a square, the area of the base ([tex]\( \text{Base Area} \)[/tex]) can be calculated as:
[tex]\[ \text{Base Area} = x^2 \text{ cm}^2 \][/tex]
4. Substitute the known values into the volume formula:
Plugging in the base area and the height into the volume formula, we get:
[tex]\[ V = \frac{1}{3} \times x^2 \times 9 \][/tex]
5. Simplify the expression:
Simplifying the expression:
[tex]\[ V = \frac{1}{3} \times 9 \times x^2 \][/tex]
[tex]\[ V = 3 \times x^2 \][/tex]
6. Write the final volume expression in terms of [tex]\( x \)[/tex]:
The volume of the oblique square pyramid in terms of [tex]\( x \)[/tex] is:
[tex]\[ 3x^2 \text{ cm}^3 \][/tex]
Therefore, the correct answer is [tex]\(\boxed{3x^2 \text{ cm}^3}\)[/tex].
1. Understand the formula for the volume of a pyramid:
The volume [tex]\( V \)[/tex] of a pyramid is given by the formula:
[tex]\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
2. Identify the given values:
- The base edge of the square pyramid is [tex]\( x \)[/tex] cm.
- The height of the pyramid is [tex]\( 9 \)[/tex] cm.
3. Calculate the base area:
Since the base is a square, the area of the base ([tex]\( \text{Base Area} \)[/tex]) can be calculated as:
[tex]\[ \text{Base Area} = x^2 \text{ cm}^2 \][/tex]
4. Substitute the known values into the volume formula:
Plugging in the base area and the height into the volume formula, we get:
[tex]\[ V = \frac{1}{3} \times x^2 \times 9 \][/tex]
5. Simplify the expression:
Simplifying the expression:
[tex]\[ V = \frac{1}{3} \times 9 \times x^2 \][/tex]
[tex]\[ V = 3 \times x^2 \][/tex]
6. Write the final volume expression in terms of [tex]\( x \)[/tex]:
The volume of the oblique square pyramid in terms of [tex]\( x \)[/tex] is:
[tex]\[ 3x^2 \text{ cm}^3 \][/tex]
Therefore, the correct answer is [tex]\(\boxed{3x^2 \text{ cm}^3}\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.