Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's calculate the volume of an oblique square pyramid step-by-step.
1. Understand the formula for the volume of a pyramid:
The volume [tex]\( V \)[/tex] of a pyramid is given by the formula:
[tex]\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
2. Identify the given values:
- The base edge of the square pyramid is [tex]\( x \)[/tex] cm.
- The height of the pyramid is [tex]\( 9 \)[/tex] cm.
3. Calculate the base area:
Since the base is a square, the area of the base ([tex]\( \text{Base Area} \)[/tex]) can be calculated as:
[tex]\[ \text{Base Area} = x^2 \text{ cm}^2 \][/tex]
4. Substitute the known values into the volume formula:
Plugging in the base area and the height into the volume formula, we get:
[tex]\[ V = \frac{1}{3} \times x^2 \times 9 \][/tex]
5. Simplify the expression:
Simplifying the expression:
[tex]\[ V = \frac{1}{3} \times 9 \times x^2 \][/tex]
[tex]\[ V = 3 \times x^2 \][/tex]
6. Write the final volume expression in terms of [tex]\( x \)[/tex]:
The volume of the oblique square pyramid in terms of [tex]\( x \)[/tex] is:
[tex]\[ 3x^2 \text{ cm}^3 \][/tex]
Therefore, the correct answer is [tex]\(\boxed{3x^2 \text{ cm}^3}\)[/tex].
1. Understand the formula for the volume of a pyramid:
The volume [tex]\( V \)[/tex] of a pyramid is given by the formula:
[tex]\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
2. Identify the given values:
- The base edge of the square pyramid is [tex]\( x \)[/tex] cm.
- The height of the pyramid is [tex]\( 9 \)[/tex] cm.
3. Calculate the base area:
Since the base is a square, the area of the base ([tex]\( \text{Base Area} \)[/tex]) can be calculated as:
[tex]\[ \text{Base Area} = x^2 \text{ cm}^2 \][/tex]
4. Substitute the known values into the volume formula:
Plugging in the base area and the height into the volume formula, we get:
[tex]\[ V = \frac{1}{3} \times x^2 \times 9 \][/tex]
5. Simplify the expression:
Simplifying the expression:
[tex]\[ V = \frac{1}{3} \times 9 \times x^2 \][/tex]
[tex]\[ V = 3 \times x^2 \][/tex]
6. Write the final volume expression in terms of [tex]\( x \)[/tex]:
The volume of the oblique square pyramid in terms of [tex]\( x \)[/tex] is:
[tex]\[ 3x^2 \text{ cm}^3 \][/tex]
Therefore, the correct answer is [tex]\(\boxed{3x^2 \text{ cm}^3}\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.