Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

The vertex is located at [tex]\((8.33, 236.67)\)[/tex].

What does this point represent in context?

[tex]\(x = \text{selling price of each soccer ball}\)[/tex]

[tex]\(y = \text{daily profit from soccer balls}\)[/tex]

Sagot :

The given equation [tex]\( y = -6x^2 + 100x - 180 \)[/tex] represents the relationship between the selling price of each soccer ball (denoted by [tex]\( x \)[/tex]) and the daily profit (denoted by [tex]\( y \)[/tex]) from selling the soccer balls.

To understand what the vertex [tex]\( (8.33, 236.67) \)[/tex] represents in this context, follow these steps:

1. Identify the Vertex:
The vertex form of a parabola [tex]\( y = ax^2 + bx + c \)[/tex] provides critical information about the maximum or minimum point of the quadratic function. Here, [tex]\( a = -6, b = 100, \)[/tex] and [tex]\( c = -180 \)[/tex]. The vertex of this parabola, given as [tex]\( (8.33, 236.67) \)[/tex], represents the point at which the function reaches its maximum value.

2. Interpret the X-Coordinate of the Vertex:
The [tex]\( x \)[/tex]-coordinate of the vertex, [tex]\( x = 8.33 \)[/tex], represents the selling price of each soccer ball that maximizes the daily profit.

3. Interpret the Y-Coordinate of the Vertex:
The [tex]\( y \)[/tex]-coordinate of the vertex, [tex]\( y = 236.67 \)[/tex], represents the corresponding maximum daily profit when the soccer balls are sold at [tex]\( x = 8.33 \)[/tex] dollars each.

4. Combine These Interpretations:
Therefore, the vertex [tex]\( (8.33, 236.67) \)[/tex] indicates that when the soccer balls are sold at [tex]$8.33 each, the daily profit is maximized, reaching an amount of $[/tex]236.67.

In summary, in the context of the given equation [tex]\( y = -6x^2 + 100x - 180 \)[/tex], the point [tex]\( (8.33, 236.67) \)[/tex] represents the optimal selling price of [tex]$8.33 per soccer ball, which results in the highest possible daily profit of $[/tex]236.67.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.