Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the coordinates of point B, we need to solve the system of equations given by the circle [tex]\( C \)[/tex] and the line [tex]\( L \)[/tex].
1. Equation of the Circle:
The circle is centered at the origin and has the equation:
[tex]\[ x^2 + y^2 = 20 \][/tex]
2. Equation of the Line:
The line has the equation:
[tex]\[ x + 2y = 5 \][/tex]
3. Solving the System of Equations:
We solve these two equations simultaneously to find the points of intersection (where the line intersects the circle).
4. Substitution Method:
From the line equation [tex]\( x + 2y = 5 \)[/tex], solve for [tex]\( x \)[/tex]:
[tex]\[ x = 5 - 2y \][/tex]
5. Substitute into the Circle Equation:
Substitute [tex]\( x = 5 - 2y \)[/tex] into the circle equation [tex]\( x^2 + y^2 = 20 \)[/tex]:
[tex]\[ (5 - 2y)^2 + y^2 = 20 \][/tex]
6. Expand and Simplify:
[tex]\[ (5 - 2y)^2 = 25 - 20y + 4y^2 \][/tex]
So, the equation becomes:
[tex]\[ 25 - 20y + 4y^2 + y^2 = 20 \][/tex]
Combine like terms:
[tex]\[ 5y^2 - 20y + 25 = 20 \][/tex]
Subtract 20 from both sides:
[tex]\[ 5y^2 - 20y + 5 = 0 \][/tex]
7. Simplify the Quadratic Equation:
[tex]\[ y^2 - 4y + 1 = 0 \][/tex]
8. Solve the Quadratic Equation (Use the Quadratic Formula):
Recall, the quadratic formula is [tex]\( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex].
For our quadratic equation [tex]\( y^2 - 4y + 1 = 0 \)[/tex], [tex]\( a = 1 \)[/tex], [tex]\( b = -4 \)[/tex], and [tex]\( c = 1 \)[/tex]:
[tex]\[ y = \frac{4 \pm \sqrt{16 - 4}}{2} \][/tex]
[tex]\[ y = \frac{4 \pm \sqrt{12}}{2} \][/tex]
[tex]\[ y = \frac{4 \pm 2\sqrt{3}}{2} \][/tex]
[tex]\[ y = 2 \pm \sqrt{3} \][/tex]
9. Find Corresponding [tex]\( x \)[/tex] Values:
For [tex]\( y = 2 + \sqrt{3} \)[/tex]:
[tex]\[ x = 5 - 2(2 + \sqrt{3}) = 5 - 4 - 2\sqrt{3} = 1 - 2\sqrt{3} \][/tex]
For [tex]\( y = 2 - \sqrt{3} \)[/tex]:
[tex]\[ x = 5 - 2(2 - \sqrt{3}) = 5 - 4 + 2\sqrt{3} = 1 + 2\sqrt{3} \][/tex]
10. Points of Intersection:
The points of intersection (solutions) are:
[tex]\[ \left(1 - 2\sqrt{3}, 2 + \sqrt{3}\right) \quad \text{and} \quad \left(1 + 2\sqrt{3}, 2 - \sqrt{3}\right) \][/tex]
11. Identify Point B:
Since point A is [tex]\((-7, 6)\)[/tex] and it is not either of these solutions, point B must be [tex]\(\left(1 + 2\sqrt{3}, 2 - \sqrt{3}\right)\)[/tex].
Therefore, the coordinates of point B are:
[tex]\[ \boxed{\left(1 + 2\sqrt{3}, 2 - \sqrt{3}\right)} \][/tex]
1. Equation of the Circle:
The circle is centered at the origin and has the equation:
[tex]\[ x^2 + y^2 = 20 \][/tex]
2. Equation of the Line:
The line has the equation:
[tex]\[ x + 2y = 5 \][/tex]
3. Solving the System of Equations:
We solve these two equations simultaneously to find the points of intersection (where the line intersects the circle).
4. Substitution Method:
From the line equation [tex]\( x + 2y = 5 \)[/tex], solve for [tex]\( x \)[/tex]:
[tex]\[ x = 5 - 2y \][/tex]
5. Substitute into the Circle Equation:
Substitute [tex]\( x = 5 - 2y \)[/tex] into the circle equation [tex]\( x^2 + y^2 = 20 \)[/tex]:
[tex]\[ (5 - 2y)^2 + y^2 = 20 \][/tex]
6. Expand and Simplify:
[tex]\[ (5 - 2y)^2 = 25 - 20y + 4y^2 \][/tex]
So, the equation becomes:
[tex]\[ 25 - 20y + 4y^2 + y^2 = 20 \][/tex]
Combine like terms:
[tex]\[ 5y^2 - 20y + 25 = 20 \][/tex]
Subtract 20 from both sides:
[tex]\[ 5y^2 - 20y + 5 = 0 \][/tex]
7. Simplify the Quadratic Equation:
[tex]\[ y^2 - 4y + 1 = 0 \][/tex]
8. Solve the Quadratic Equation (Use the Quadratic Formula):
Recall, the quadratic formula is [tex]\( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex].
For our quadratic equation [tex]\( y^2 - 4y + 1 = 0 \)[/tex], [tex]\( a = 1 \)[/tex], [tex]\( b = -4 \)[/tex], and [tex]\( c = 1 \)[/tex]:
[tex]\[ y = \frac{4 \pm \sqrt{16 - 4}}{2} \][/tex]
[tex]\[ y = \frac{4 \pm \sqrt{12}}{2} \][/tex]
[tex]\[ y = \frac{4 \pm 2\sqrt{3}}{2} \][/tex]
[tex]\[ y = 2 \pm \sqrt{3} \][/tex]
9. Find Corresponding [tex]\( x \)[/tex] Values:
For [tex]\( y = 2 + \sqrt{3} \)[/tex]:
[tex]\[ x = 5 - 2(2 + \sqrt{3}) = 5 - 4 - 2\sqrt{3} = 1 - 2\sqrt{3} \][/tex]
For [tex]\( y = 2 - \sqrt{3} \)[/tex]:
[tex]\[ x = 5 - 2(2 - \sqrt{3}) = 5 - 4 + 2\sqrt{3} = 1 + 2\sqrt{3} \][/tex]
10. Points of Intersection:
The points of intersection (solutions) are:
[tex]\[ \left(1 - 2\sqrt{3}, 2 + \sqrt{3}\right) \quad \text{and} \quad \left(1 + 2\sqrt{3}, 2 - \sqrt{3}\right) \][/tex]
11. Identify Point B:
Since point A is [tex]\((-7, 6)\)[/tex] and it is not either of these solutions, point B must be [tex]\(\left(1 + 2\sqrt{3}, 2 - \sqrt{3}\right)\)[/tex].
Therefore, the coordinates of point B are:
[tex]\[ \boxed{\left(1 + 2\sqrt{3}, 2 - \sqrt{3}\right)} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.