Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To analyze the price of electricity with the provided data, we can use Chebyshev's Inequality, which is applicable to any probability distribution. Chebyshev's Inequality states that for any number [tex]\(K > 1\)[/tex], at least [tex]\((1 - \frac{1}{K^2})\)[/tex] of the data values lie within [tex]\(K\)[/tex] standard deviations of the mean.
Given the following information:
- Mean price ([tex]\(\mu\)[/tex]) = 11.43 cents per kilowatt-hour
- Standard deviation ([tex]\(\sigma\)[/tex]) = 1.70 cents per kilowatt-hour
- [tex]\(K = 3\)[/tex]
First, we determine the bounds within which at least a certain percentage of data will fall. This can be calculated using the formula for Chebyshev's Inequality:
[tex]\[ \text{Lower bound} = \mu - K \sigma \][/tex]
[tex]\[ \text{Upper bound} = \mu + K \sigma \][/tex]
Step-by-Step Calculation:
1. Calculate the lower bound:
[tex]\[ \text{Lower bound} = 11.43 - 3 \times 1.70 \][/tex]
[tex]\[ \text{Lower bound} = 11.43 - 5.10 \][/tex]
[tex]\[ \text{Lower bound} = 6.33 \][/tex]
2. Calculate the upper bound:
[tex]\[ \text{Upper bound} = 11.43 + 3 \times 1.70 \][/tex]
[tex]\[ \text{Upper bound} = 11.43 + 5.10 \][/tex]
[tex]\[ \text{Upper bound} = 16.53 \][/tex]
3. Determine the percentage of data within these bounds:
[tex]\[ \text{Percentage} = \left(1 - \frac{1}{3^2}\right) \times 100\% \][/tex]
[tex]\[ \text{Percentage} = \left(1 - \frac{1}{9}\right) \times 100\% \][/tex]
[tex]\[ \text{Percentage} = \left(\frac{8}{9}\right) \times 100\% \][/tex]
[tex]\[ \text{Percentage} \approx 88.89\% \][/tex]
Therefore, using Chebyshev's Inequality with [tex]\(K=3\)[/tex], we can determine that at least [tex]\(88.89\%\)[/tex] of the data fall between [tex]\(6.33\)[/tex] and [tex]\(16.53\)[/tex] cents per kilowatt-hour, rounded to two decimal places.
Given the following information:
- Mean price ([tex]\(\mu\)[/tex]) = 11.43 cents per kilowatt-hour
- Standard deviation ([tex]\(\sigma\)[/tex]) = 1.70 cents per kilowatt-hour
- [tex]\(K = 3\)[/tex]
First, we determine the bounds within which at least a certain percentage of data will fall. This can be calculated using the formula for Chebyshev's Inequality:
[tex]\[ \text{Lower bound} = \mu - K \sigma \][/tex]
[tex]\[ \text{Upper bound} = \mu + K \sigma \][/tex]
Step-by-Step Calculation:
1. Calculate the lower bound:
[tex]\[ \text{Lower bound} = 11.43 - 3 \times 1.70 \][/tex]
[tex]\[ \text{Lower bound} = 11.43 - 5.10 \][/tex]
[tex]\[ \text{Lower bound} = 6.33 \][/tex]
2. Calculate the upper bound:
[tex]\[ \text{Upper bound} = 11.43 + 3 \times 1.70 \][/tex]
[tex]\[ \text{Upper bound} = 11.43 + 5.10 \][/tex]
[tex]\[ \text{Upper bound} = 16.53 \][/tex]
3. Determine the percentage of data within these bounds:
[tex]\[ \text{Percentage} = \left(1 - \frac{1}{3^2}\right) \times 100\% \][/tex]
[tex]\[ \text{Percentage} = \left(1 - \frac{1}{9}\right) \times 100\% \][/tex]
[tex]\[ \text{Percentage} = \left(\frac{8}{9}\right) \times 100\% \][/tex]
[tex]\[ \text{Percentage} \approx 88.89\% \][/tex]
Therefore, using Chebyshev's Inequality with [tex]\(K=3\)[/tex], we can determine that at least [tex]\(88.89\%\)[/tex] of the data fall between [tex]\(6.33\)[/tex] and [tex]\(16.53\)[/tex] cents per kilowatt-hour, rounded to two decimal places.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.