Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To analyze the price of electricity with the provided data, we can use Chebyshev's Inequality, which is applicable to any probability distribution. Chebyshev's Inequality states that for any number [tex]\(K > 1\)[/tex], at least [tex]\((1 - \frac{1}{K^2})\)[/tex] of the data values lie within [tex]\(K\)[/tex] standard deviations of the mean.
Given the following information:
- Mean price ([tex]\(\mu\)[/tex]) = 11.43 cents per kilowatt-hour
- Standard deviation ([tex]\(\sigma\)[/tex]) = 1.70 cents per kilowatt-hour
- [tex]\(K = 3\)[/tex]
First, we determine the bounds within which at least a certain percentage of data will fall. This can be calculated using the formula for Chebyshev's Inequality:
[tex]\[ \text{Lower bound} = \mu - K \sigma \][/tex]
[tex]\[ \text{Upper bound} = \mu + K \sigma \][/tex]
Step-by-Step Calculation:
1. Calculate the lower bound:
[tex]\[ \text{Lower bound} = 11.43 - 3 \times 1.70 \][/tex]
[tex]\[ \text{Lower bound} = 11.43 - 5.10 \][/tex]
[tex]\[ \text{Lower bound} = 6.33 \][/tex]
2. Calculate the upper bound:
[tex]\[ \text{Upper bound} = 11.43 + 3 \times 1.70 \][/tex]
[tex]\[ \text{Upper bound} = 11.43 + 5.10 \][/tex]
[tex]\[ \text{Upper bound} = 16.53 \][/tex]
3. Determine the percentage of data within these bounds:
[tex]\[ \text{Percentage} = \left(1 - \frac{1}{3^2}\right) \times 100\% \][/tex]
[tex]\[ \text{Percentage} = \left(1 - \frac{1}{9}\right) \times 100\% \][/tex]
[tex]\[ \text{Percentage} = \left(\frac{8}{9}\right) \times 100\% \][/tex]
[tex]\[ \text{Percentage} \approx 88.89\% \][/tex]
Therefore, using Chebyshev's Inequality with [tex]\(K=3\)[/tex], we can determine that at least [tex]\(88.89\%\)[/tex] of the data fall between [tex]\(6.33\)[/tex] and [tex]\(16.53\)[/tex] cents per kilowatt-hour, rounded to two decimal places.
Given the following information:
- Mean price ([tex]\(\mu\)[/tex]) = 11.43 cents per kilowatt-hour
- Standard deviation ([tex]\(\sigma\)[/tex]) = 1.70 cents per kilowatt-hour
- [tex]\(K = 3\)[/tex]
First, we determine the bounds within which at least a certain percentage of data will fall. This can be calculated using the formula for Chebyshev's Inequality:
[tex]\[ \text{Lower bound} = \mu - K \sigma \][/tex]
[tex]\[ \text{Upper bound} = \mu + K \sigma \][/tex]
Step-by-Step Calculation:
1. Calculate the lower bound:
[tex]\[ \text{Lower bound} = 11.43 - 3 \times 1.70 \][/tex]
[tex]\[ \text{Lower bound} = 11.43 - 5.10 \][/tex]
[tex]\[ \text{Lower bound} = 6.33 \][/tex]
2. Calculate the upper bound:
[tex]\[ \text{Upper bound} = 11.43 + 3 \times 1.70 \][/tex]
[tex]\[ \text{Upper bound} = 11.43 + 5.10 \][/tex]
[tex]\[ \text{Upper bound} = 16.53 \][/tex]
3. Determine the percentage of data within these bounds:
[tex]\[ \text{Percentage} = \left(1 - \frac{1}{3^2}\right) \times 100\% \][/tex]
[tex]\[ \text{Percentage} = \left(1 - \frac{1}{9}\right) \times 100\% \][/tex]
[tex]\[ \text{Percentage} = \left(\frac{8}{9}\right) \times 100\% \][/tex]
[tex]\[ \text{Percentage} \approx 88.89\% \][/tex]
Therefore, using Chebyshev's Inequality with [tex]\(K=3\)[/tex], we can determine that at least [tex]\(88.89\%\)[/tex] of the data fall between [tex]\(6.33\)[/tex] and [tex]\(16.53\)[/tex] cents per kilowatt-hour, rounded to two decimal places.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.