At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To analyze the price of electricity with the provided data, we can use Chebyshev's Inequality, which is applicable to any probability distribution. Chebyshev's Inequality states that for any number [tex]\(K > 1\)[/tex], at least [tex]\((1 - \frac{1}{K^2})\)[/tex] of the data values lie within [tex]\(K\)[/tex] standard deviations of the mean.
Given the following information:
- Mean price ([tex]\(\mu\)[/tex]) = 11.43 cents per kilowatt-hour
- Standard deviation ([tex]\(\sigma\)[/tex]) = 1.70 cents per kilowatt-hour
- [tex]\(K = 3\)[/tex]
First, we determine the bounds within which at least a certain percentage of data will fall. This can be calculated using the formula for Chebyshev's Inequality:
[tex]\[ \text{Lower bound} = \mu - K \sigma \][/tex]
[tex]\[ \text{Upper bound} = \mu + K \sigma \][/tex]
Step-by-Step Calculation:
1. Calculate the lower bound:
[tex]\[ \text{Lower bound} = 11.43 - 3 \times 1.70 \][/tex]
[tex]\[ \text{Lower bound} = 11.43 - 5.10 \][/tex]
[tex]\[ \text{Lower bound} = 6.33 \][/tex]
2. Calculate the upper bound:
[tex]\[ \text{Upper bound} = 11.43 + 3 \times 1.70 \][/tex]
[tex]\[ \text{Upper bound} = 11.43 + 5.10 \][/tex]
[tex]\[ \text{Upper bound} = 16.53 \][/tex]
3. Determine the percentage of data within these bounds:
[tex]\[ \text{Percentage} = \left(1 - \frac{1}{3^2}\right) \times 100\% \][/tex]
[tex]\[ \text{Percentage} = \left(1 - \frac{1}{9}\right) \times 100\% \][/tex]
[tex]\[ \text{Percentage} = \left(\frac{8}{9}\right) \times 100\% \][/tex]
[tex]\[ \text{Percentage} \approx 88.89\% \][/tex]
Therefore, using Chebyshev's Inequality with [tex]\(K=3\)[/tex], we can determine that at least [tex]\(88.89\%\)[/tex] of the data fall between [tex]\(6.33\)[/tex] and [tex]\(16.53\)[/tex] cents per kilowatt-hour, rounded to two decimal places.
Given the following information:
- Mean price ([tex]\(\mu\)[/tex]) = 11.43 cents per kilowatt-hour
- Standard deviation ([tex]\(\sigma\)[/tex]) = 1.70 cents per kilowatt-hour
- [tex]\(K = 3\)[/tex]
First, we determine the bounds within which at least a certain percentage of data will fall. This can be calculated using the formula for Chebyshev's Inequality:
[tex]\[ \text{Lower bound} = \mu - K \sigma \][/tex]
[tex]\[ \text{Upper bound} = \mu + K \sigma \][/tex]
Step-by-Step Calculation:
1. Calculate the lower bound:
[tex]\[ \text{Lower bound} = 11.43 - 3 \times 1.70 \][/tex]
[tex]\[ \text{Lower bound} = 11.43 - 5.10 \][/tex]
[tex]\[ \text{Lower bound} = 6.33 \][/tex]
2. Calculate the upper bound:
[tex]\[ \text{Upper bound} = 11.43 + 3 \times 1.70 \][/tex]
[tex]\[ \text{Upper bound} = 11.43 + 5.10 \][/tex]
[tex]\[ \text{Upper bound} = 16.53 \][/tex]
3. Determine the percentage of data within these bounds:
[tex]\[ \text{Percentage} = \left(1 - \frac{1}{3^2}\right) \times 100\% \][/tex]
[tex]\[ \text{Percentage} = \left(1 - \frac{1}{9}\right) \times 100\% \][/tex]
[tex]\[ \text{Percentage} = \left(\frac{8}{9}\right) \times 100\% \][/tex]
[tex]\[ \text{Percentage} \approx 88.89\% \][/tex]
Therefore, using Chebyshev's Inequality with [tex]\(K=3\)[/tex], we can determine that at least [tex]\(88.89\%\)[/tex] of the data fall between [tex]\(6.33\)[/tex] and [tex]\(16.53\)[/tex] cents per kilowatt-hour, rounded to two decimal places.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.