Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

7) A sample of two types of electric bulbs were tested for length of life. The following results were obtained:

\begin{tabular}{|c|c|c|c|}
\hline
& Sample size & \begin{tabular}{c}
Sample \\
mean(hrs)
\end{tabular} & \begin{tabular}{c}
Sample \\
s.d.(hrs)
\end{tabular} \\
\hline
Type I & 50 & 1234 & 36 \\
\hline
Type II & 50 & 1215 & 40 \\
\hline
\end{tabular}

Test whether the Type I bulb is superior to the Type II bulb regarding their length of life at [tex][tex]$5 \%$[/tex][/tex] level of significance.


Sagot :

To determine whether Type I bulbs are superior to Type II bulbs regarding their length of life, we will perform an independent samples t-test. This test will help us compare the means of the two independent samples to see if there is a statistically significant difference between them.

Here are the steps for this hypothesis test:

1. State the Hypotheses:
- Null Hypothesis [tex]\(H_0\)[/tex]: The mean length of life of Type I bulbs is equal to the mean length of life of Type II bulbs. [tex]\(\mu_1 = \mu_2\)[/tex]
- Alternative Hypothesis [tex]\(H_a\)[/tex]: The mean length of life of Type I bulbs is greater than the mean length of life of Type II bulbs. [tex]\(\mu_1 > \mu_2\)[/tex]

2. Significance Level:
- The significance level [tex]\(\alpha\)[/tex] is 0.05.

3. Calculate the Standard Error (SE):
The standard error of the difference in means is calculated using the formula:
[tex]\[ SE = \sqrt{\left(\frac{sd_1^2}{n_1}\right) + \left(\frac{sd_2^2}{n_2}\right)} \][/tex]
Using the given data:
- [tex]\(sd_1 = 36\)[/tex]
- [tex]\(n_1 = 50\)[/tex]
- [tex]\(sd_2 = 40\)[/tex]
- [tex]\(n_2 = 50\)[/tex]

[tex]\[ SE = \sqrt{\left(\frac{36^2}{50}\right) + \left(\frac{40^2}{50}\right)} = 7.610519036176179 \][/tex]

4. Calculate the Test Statistic:
The test statistic (t) is calculated using the formula:
[tex]\[ t = \frac{(\bar{x}_1 - \bar{x}_2)}{SE} \][/tex]
Where,
- [tex]\(\bar{x}_1 = 1234\)[/tex]
- [tex]\(\bar{x}_2 = 1215\)[/tex]

[tex]\[ t = \frac{(1234 - 1215)}{7.610519036176179} = 2.496544573331274 \][/tex]

5. Determine Degrees of Freedom:
Degrees of freedom (df) for the test are calculated using the formula:
[tex]\[ df = \frac{\left(\frac{sd_1^2}{n_1} + \frac{sd_2^2}{n_2}\right)^2}{\left(\frac{\left(\frac{sd_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{sd_2^2}{n_2}\right)^2}{n_2 - 1}\right)} \][/tex]
[tex]\[ df = \frac{\left(\frac{36^2}{50} + \frac{40^2}{50}\right)^2}{\left(\frac{\left(\frac{36^2}{50}\right)^2}{49} + \frac{\left(\frac{40^2}{50}\right)^2}{49}\right)} = 96.93188817100418 \][/tex]

6. Determine the Critical Value:
For a one-tailed test at [tex]\(\alpha = 0.05\)[/tex] significance level and [tex]\(df = 96.93\)[/tex], the critical value from the t-distribution table is approximately 1.6607.

7. Decision Rule:
Compare the test statistic to the critical value:
- If [tex]\(t > t_{\text{critical}}\)[/tex], we reject the null hypothesis.

Here, [tex]\(t = 2.4965\)[/tex] and [tex]\(t_{\text{critical}} = 1.6607\)[/tex].
Since [tex]\(2.4965 > 1.6607\)[/tex], we reject the null hypothesis.

8. Conclusion:
Since the test statistic is greater than the critical value, we reject the null hypothesis. This means that there is sufficient evidence at the 5% level of significance to conclude that the mean length of life for Type I bulbs is significantly greater than that for Type II bulbs. Therefore, Type I bulbs are superior to Type II bulbs concerning their length of life.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.