Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which substance is the acid in the given reaction, we need to remember the fundamental definition of an acid. According to the Brønsted-Lowry definition, an acid is a substance that donates a proton (H⁺ ion) during a reaction.
Let's analyze the reaction provided:
[tex]$ H _2 SO _4(a q) + Mg (s) \longrightarrow MgSO _4(a q) + H _2(g) $[/tex]
1. Identify the potential candidates for the acid:
- [tex]\( Mg(s) \)[/tex] is a solid metal.
- [tex]\( H _2(g) \)[/tex] is a diatomic gas.
- [tex]\( MgSO _4(aq) \)[/tex] is an aqueous ionic compound.
- [tex]\( H _2 SO _4(aq) \)[/tex] is an aqueous solution of sulfuric acid.
2. Examine the nature of each substance:
- [tex]\( Mg(s) \)[/tex] is a solid metal and typically does not donate protons. It can, however, be a reducing agent.
- [tex]\( H _2(g) \)[/tex] is a gas composed of diatomic hydrogen molecules. It is generally produced as a byproduct in acid-metal reactions and does not act as an acid.
- [tex]\( MgSO _4(aq) \)[/tex] is a salt formed in the reaction and remains in the aqueous ionized form. It does not participate in proton exchange.
- [tex]\( H _2 SO _4(aq) \)[/tex] is sulfuric acid, a well-known strong acid. It is capable of donating protons (H⁺) readily.
3. Determine the proton donor:
The substance which donates a proton (H⁺) in the reaction is [tex]\( H _2 SO _4 \)[/tex]. During the reaction, [tex]\( H _2 SO _4 \)[/tex] donates protons which react with the metal [tex]\( Mg(s) \)[/tex] to produce [tex]\( MgSO _4(aq) \)[/tex] and release hydrogen gas [tex]\( H _2(g) \)[/tex].
Given the above analysis, the acid in this reaction is clearly [tex]\( H _2 SO _4(aq) \)[/tex].
So, the substance acting as the acid in the reaction is:
[tex]$[/tex]
\boxed{H _2 SO _4(aq)}
```
Let's analyze the reaction provided:
[tex]$ H _2 SO _4(a q) + Mg (s) \longrightarrow MgSO _4(a q) + H _2(g) $[/tex]
1. Identify the potential candidates for the acid:
- [tex]\( Mg(s) \)[/tex] is a solid metal.
- [tex]\( H _2(g) \)[/tex] is a diatomic gas.
- [tex]\( MgSO _4(aq) \)[/tex] is an aqueous ionic compound.
- [tex]\( H _2 SO _4(aq) \)[/tex] is an aqueous solution of sulfuric acid.
2. Examine the nature of each substance:
- [tex]\( Mg(s) \)[/tex] is a solid metal and typically does not donate protons. It can, however, be a reducing agent.
- [tex]\( H _2(g) \)[/tex] is a gas composed of diatomic hydrogen molecules. It is generally produced as a byproduct in acid-metal reactions and does not act as an acid.
- [tex]\( MgSO _4(aq) \)[/tex] is a salt formed in the reaction and remains in the aqueous ionized form. It does not participate in proton exchange.
- [tex]\( H _2 SO _4(aq) \)[/tex] is sulfuric acid, a well-known strong acid. It is capable of donating protons (H⁺) readily.
3. Determine the proton donor:
The substance which donates a proton (H⁺) in the reaction is [tex]\( H _2 SO _4 \)[/tex]. During the reaction, [tex]\( H _2 SO _4 \)[/tex] donates protons which react with the metal [tex]\( Mg(s) \)[/tex] to produce [tex]\( MgSO _4(aq) \)[/tex] and release hydrogen gas [tex]\( H _2(g) \)[/tex].
Given the above analysis, the acid in this reaction is clearly [tex]\( H _2 SO _4(aq) \)[/tex].
So, the substance acting as the acid in the reaction is:
[tex]$[/tex]
\boxed{H _2 SO _4(aq)}
```
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.