Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

In a standard normal distribution, [tex][tex]$95\%$[/tex][/tex] of the data is within [tex][tex]$\pm$[/tex][/tex] how many standard deviations of the mean?

A. 0
B. 1
C. 2
D. 3

Sagot :

In a standard normal distribution, the empirical rule (also known as the 68-95-99.7 rule) is a key principle that helps us understand the spread of data around the mean. According to the empirical rule:

1. Approximately 68% of the data falls within ±1 standard deviation of the mean.
2. Approximately 95% of the data falls within ±2 standard deviations of the mean.
3. Approximately 99.7% of the data falls within ±3 standard deviations of the mean.

In this case, we are interested in the range where 95% of the data lies within. According to the empirical rule, 95% of the data in a standard normal distribution is within ±2 standard deviations of the mean.

Therefore, the correct answer is 2.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.