Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To graph the function [tex]\( h \)[/tex] defined as:
[tex]\[ h(x) = \begin{cases} x & \text{if } x \neq 2 \\ 3 & \text{if } x = 2 \end{cases} \][/tex]
we will proceed through the following steps:
1. Understand the Function:
- For all values of [tex]\( x \)[/tex] except [tex]\( x = 2 \)[/tex], the function [tex]\( h(x) \)[/tex] is linear and defined as [tex]\( h(x) = x \)[/tex].
- Exactly at [tex]\( x = 2 \)[/tex], the function [tex]\( h(x) \)[/tex] takes the value [tex]\( h(2) = 3 \)[/tex], which is a point discontinuity (it differs from the value [tex]\( h(x) = x \)[/tex] that would normally be [tex]\( h(2) = 2 \)[/tex]).
2. Graph the Linear Part:
- Plot the line [tex]\( y = x \)[/tex] for all [tex]\( x \neq 2 \)[/tex]. This line passes through the origin [tex]\((0, 0)\)[/tex] and has a slope of 1 (i.e., for each unit increase in [tex]\( x \)[/tex], [tex]\( y \)[/tex] also increases by 1).
3. Mark the Point of Discontinuity:
- At [tex]\( x = 2 \)[/tex], instead of following the line [tex]\( y = x \)[/tex], the function [tex]\( h(x) \)[/tex] jumps to [tex]\( h(2) = 3 \)[/tex].
- Represent this point [tex]\((2, 3)\)[/tex] with a filled circle to indicate that the function takes this value at [tex]\( x = 2 \)[/tex].
- Draw an open circle at the point [tex]\((2, 2)\)[/tex] on the line [tex]\( y = x \)[/tex] to illustrate that the value [tex]\( x = 2 \)[/tex] is not included in the linear part of the function.
4. Add Axes and Labels:
- Draw and label the [tex]\( x \)[/tex]-axis and [tex]\( y \)[/tex]-axis.
- Provide axis labels and appropriate tick marks for reference.
### Detailed Steps to Plot:
1. Draw the Line [tex]\( y = x \)[/tex]:
- For [tex]\( x \)[/tex] ranging from a wide interval like [tex]\([-10, 10]\)[/tex]:
- When [tex]\( x = -10 \)[/tex], [tex]\( y = -10 \)[/tex]
- When [tex]\( x = 0 \)[/tex], [tex]\( y = 0 \)[/tex]
- When [tex]\( x = 10 \)[/tex], [tex]\( y = 10 \)[/tex]
- Connect these points with a straight line, but exclude the point where [tex]\( x = 2 \)[/tex].
2. Add the Special Points:
- Draw an open circle at [tex]\((2, 2)\)[/tex] to indicate that [tex]\( h(x) \)[/tex] does not equal 2 when [tex]\( x = 2 \)[/tex].
- Put a filled circle at [tex]\((2, 3)\)[/tex] to show that [tex]\( h(2) = 3 \)[/tex].
### Final Graph:
1. Draw the [tex]\( y = x \)[/tex] Line Excluding [tex]\( x = 2 \)[/tex]:
- A diagonal line passing through the origin (0,0) and continuing in both positive and negative directions, with a gap at [tex]\( x = 2 \)[/tex].
2. Mark [tex]\( (2, 3) \)[/tex] with a Filled Circle:
- This distinct point signifies the value of the function at [tex]\( x = 2 \)[/tex].
3. Relevant Labels:
- Label the vertical axis (y-axis) and horizontal axis (x-axis).
- Optionally, label specific points or add grid lines for clarity.
This graph will illustrate both the continuous linear behavior of [tex]\( h \)[/tex] away from [tex]\( x = 2 \)[/tex] and the unique behavior of [tex]\( h \)[/tex] at [tex]\( x = 2 \)[/tex].
[tex]\[ h(x) = \begin{cases} x & \text{if } x \neq 2 \\ 3 & \text{if } x = 2 \end{cases} \][/tex]
we will proceed through the following steps:
1. Understand the Function:
- For all values of [tex]\( x \)[/tex] except [tex]\( x = 2 \)[/tex], the function [tex]\( h(x) \)[/tex] is linear and defined as [tex]\( h(x) = x \)[/tex].
- Exactly at [tex]\( x = 2 \)[/tex], the function [tex]\( h(x) \)[/tex] takes the value [tex]\( h(2) = 3 \)[/tex], which is a point discontinuity (it differs from the value [tex]\( h(x) = x \)[/tex] that would normally be [tex]\( h(2) = 2 \)[/tex]).
2. Graph the Linear Part:
- Plot the line [tex]\( y = x \)[/tex] for all [tex]\( x \neq 2 \)[/tex]. This line passes through the origin [tex]\((0, 0)\)[/tex] and has a slope of 1 (i.e., for each unit increase in [tex]\( x \)[/tex], [tex]\( y \)[/tex] also increases by 1).
3. Mark the Point of Discontinuity:
- At [tex]\( x = 2 \)[/tex], instead of following the line [tex]\( y = x \)[/tex], the function [tex]\( h(x) \)[/tex] jumps to [tex]\( h(2) = 3 \)[/tex].
- Represent this point [tex]\((2, 3)\)[/tex] with a filled circle to indicate that the function takes this value at [tex]\( x = 2 \)[/tex].
- Draw an open circle at the point [tex]\((2, 2)\)[/tex] on the line [tex]\( y = x \)[/tex] to illustrate that the value [tex]\( x = 2 \)[/tex] is not included in the linear part of the function.
4. Add Axes and Labels:
- Draw and label the [tex]\( x \)[/tex]-axis and [tex]\( y \)[/tex]-axis.
- Provide axis labels and appropriate tick marks for reference.
### Detailed Steps to Plot:
1. Draw the Line [tex]\( y = x \)[/tex]:
- For [tex]\( x \)[/tex] ranging from a wide interval like [tex]\([-10, 10]\)[/tex]:
- When [tex]\( x = -10 \)[/tex], [tex]\( y = -10 \)[/tex]
- When [tex]\( x = 0 \)[/tex], [tex]\( y = 0 \)[/tex]
- When [tex]\( x = 10 \)[/tex], [tex]\( y = 10 \)[/tex]
- Connect these points with a straight line, but exclude the point where [tex]\( x = 2 \)[/tex].
2. Add the Special Points:
- Draw an open circle at [tex]\((2, 2)\)[/tex] to indicate that [tex]\( h(x) \)[/tex] does not equal 2 when [tex]\( x = 2 \)[/tex].
- Put a filled circle at [tex]\((2, 3)\)[/tex] to show that [tex]\( h(2) = 3 \)[/tex].
### Final Graph:
1. Draw the [tex]\( y = x \)[/tex] Line Excluding [tex]\( x = 2 \)[/tex]:
- A diagonal line passing through the origin (0,0) and continuing in both positive and negative directions, with a gap at [tex]\( x = 2 \)[/tex].
2. Mark [tex]\( (2, 3) \)[/tex] with a Filled Circle:
- This distinct point signifies the value of the function at [tex]\( x = 2 \)[/tex].
3. Relevant Labels:
- Label the vertical axis (y-axis) and horizontal axis (x-axis).
- Optionally, label specific points or add grid lines for clarity.
This graph will illustrate both the continuous linear behavior of [tex]\( h \)[/tex] away from [tex]\( x = 2 \)[/tex] and the unique behavior of [tex]\( h \)[/tex] at [tex]\( x = 2 \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.