Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's evaluate each integral step-by-step:
(a) [tex]\(\int \cos^3 \theta \, d\theta\)[/tex]
To integrate [tex]\(\cos^3 \theta\)[/tex], we can use a method known as reduction formulas or trigonometric identities.
First, we use the trigonometric identity for the cosine function:
[tex]\[ \cos^3 \theta = \cos \theta \cdot \cos^2 \theta = \cos \theta \cdot (1 - \sin^2 \theta) \][/tex]
Thus, rewriting the integral:
[tex]\[ \int \cos^3 \theta \, d\theta = \int \cos \theta \cdot (1 - \sin^2 \theta) \, d\theta \][/tex]
Now, let [tex]\(u = \sin \theta\)[/tex]. Then, [tex]\(du = \cos \theta \, d\theta\)[/tex], and the integral becomes:
[tex]\[ \int \cos \theta \cdot (1 - \sin^2 \theta) \, d\theta = \int (1 - u^2) \, du \][/tex]
Integrate each term separately:
[tex]\[ \int 1 \, du - \int u^2 \, du = u - \frac{u^3}{3} + C \][/tex]
Substituting back [tex]\(u = \sin \theta\)[/tex]:
[tex]\[ \sin \theta - \frac{\sin^3 \theta}{3} + C \][/tex]
So, the antiderivative is:
[tex]\[ -\frac{\sin^3 \theta}{3} + \sin \theta + C \][/tex]
(b) [tex]\(\int \frac{\ln \left(x^2\right)}{x^2} \, dx\)[/tex]
We start by simplifying the integrand. Recall that:
[tex]\[ \ln(x^2) = 2 \ln(x) \][/tex]
Thus, the integral becomes:
[tex]\[ \int \frac{2 \ln(x)}{x^2} \, dx \][/tex]
Rewrite the integral by taking the constant out:
[tex]\[ 2 \int \frac{\ln(x)}{x^2} \, dx \][/tex]
Now, use integration by parts. Let:
[tex]\[ u = \ln(x) \quad \text{and} \quad dv = \frac{1}{x^2} \, dx \][/tex]
Then, [tex]\(du = \frac{1}{x} \, dx\)[/tex] and integrating [tex]\(dv\)[/tex] gives us [tex]\(v = -\frac{1}{x}\)[/tex].
Using the integration by parts formula, [tex]\(\int u \, dv = uv - \int v \, du\)[/tex], we get:
[tex]\[ 2 \left[ \ln(x) \left(-\frac{1}{x}\right) - \int \left(-\frac{1}{x}\right) \left(\frac{1}{x}\right) \, dx \right] \][/tex]
Simplify and solve the remaining integral:
[tex]\[ 2 \left[ -\frac{\ln(x)}{x} + \int \frac{1}{x^2} \, dx \right] \][/tex]
The remaining integral is straightforward:
[tex]\[ \int \frac{1}{x^2} \, dx = -\frac{1}{x} \][/tex]
Putting it all together:
[tex]\[ 2 \left( -\frac{\ln(x)}{x} - \frac{1}{x} \right) = -\frac{2 \ln(x)}{x} - \frac{2}{x} + C' \][/tex]
Thus, the antiderivative is:
[tex]\[ -\frac{\ln(x^2)}{x} - \frac{2}{x} + C \][/tex]
Putting it all together:
[tex]\[ -\frac{\log(x^2)}{x} - \frac{2}{x} + C \][/tex]
Hence, based on the simplifications and results:
The integral results are:
[tex]\[ (a) \, \int \cos^3 \theta \, d\theta = -\frac{\sin^3 \theta}{3} + \sin \theta + C \][/tex]
[tex]\[ (b) \, \int \frac{\ln \left(x^2\right)}{x^2} \, dx = -\frac{\log(x^2)}{x} - \frac{2}{x} + C \][/tex]
(a) [tex]\(\int \cos^3 \theta \, d\theta\)[/tex]
To integrate [tex]\(\cos^3 \theta\)[/tex], we can use a method known as reduction formulas or trigonometric identities.
First, we use the trigonometric identity for the cosine function:
[tex]\[ \cos^3 \theta = \cos \theta \cdot \cos^2 \theta = \cos \theta \cdot (1 - \sin^2 \theta) \][/tex]
Thus, rewriting the integral:
[tex]\[ \int \cos^3 \theta \, d\theta = \int \cos \theta \cdot (1 - \sin^2 \theta) \, d\theta \][/tex]
Now, let [tex]\(u = \sin \theta\)[/tex]. Then, [tex]\(du = \cos \theta \, d\theta\)[/tex], and the integral becomes:
[tex]\[ \int \cos \theta \cdot (1 - \sin^2 \theta) \, d\theta = \int (1 - u^2) \, du \][/tex]
Integrate each term separately:
[tex]\[ \int 1 \, du - \int u^2 \, du = u - \frac{u^3}{3} + C \][/tex]
Substituting back [tex]\(u = \sin \theta\)[/tex]:
[tex]\[ \sin \theta - \frac{\sin^3 \theta}{3} + C \][/tex]
So, the antiderivative is:
[tex]\[ -\frac{\sin^3 \theta}{3} + \sin \theta + C \][/tex]
(b) [tex]\(\int \frac{\ln \left(x^2\right)}{x^2} \, dx\)[/tex]
We start by simplifying the integrand. Recall that:
[tex]\[ \ln(x^2) = 2 \ln(x) \][/tex]
Thus, the integral becomes:
[tex]\[ \int \frac{2 \ln(x)}{x^2} \, dx \][/tex]
Rewrite the integral by taking the constant out:
[tex]\[ 2 \int \frac{\ln(x)}{x^2} \, dx \][/tex]
Now, use integration by parts. Let:
[tex]\[ u = \ln(x) \quad \text{and} \quad dv = \frac{1}{x^2} \, dx \][/tex]
Then, [tex]\(du = \frac{1}{x} \, dx\)[/tex] and integrating [tex]\(dv\)[/tex] gives us [tex]\(v = -\frac{1}{x}\)[/tex].
Using the integration by parts formula, [tex]\(\int u \, dv = uv - \int v \, du\)[/tex], we get:
[tex]\[ 2 \left[ \ln(x) \left(-\frac{1}{x}\right) - \int \left(-\frac{1}{x}\right) \left(\frac{1}{x}\right) \, dx \right] \][/tex]
Simplify and solve the remaining integral:
[tex]\[ 2 \left[ -\frac{\ln(x)}{x} + \int \frac{1}{x^2} \, dx \right] \][/tex]
The remaining integral is straightforward:
[tex]\[ \int \frac{1}{x^2} \, dx = -\frac{1}{x} \][/tex]
Putting it all together:
[tex]\[ 2 \left( -\frac{\ln(x)}{x} - \frac{1}{x} \right) = -\frac{2 \ln(x)}{x} - \frac{2}{x} + C' \][/tex]
Thus, the antiderivative is:
[tex]\[ -\frac{\ln(x^2)}{x} - \frac{2}{x} + C \][/tex]
Putting it all together:
[tex]\[ -\frac{\log(x^2)}{x} - \frac{2}{x} + C \][/tex]
Hence, based on the simplifications and results:
The integral results are:
[tex]\[ (a) \, \int \cos^3 \theta \, d\theta = -\frac{\sin^3 \theta}{3} + \sin \theta + C \][/tex]
[tex]\[ (b) \, \int \frac{\ln \left(x^2\right)}{x^2} \, dx = -\frac{\log(x^2)}{x} - \frac{2}{x} + C \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.