Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's evaluate each integral step-by-step:
(a) [tex]\(\int \cos^3 \theta \, d\theta\)[/tex]
To integrate [tex]\(\cos^3 \theta\)[/tex], we can use a method known as reduction formulas or trigonometric identities.
First, we use the trigonometric identity for the cosine function:
[tex]\[ \cos^3 \theta = \cos \theta \cdot \cos^2 \theta = \cos \theta \cdot (1 - \sin^2 \theta) \][/tex]
Thus, rewriting the integral:
[tex]\[ \int \cos^3 \theta \, d\theta = \int \cos \theta \cdot (1 - \sin^2 \theta) \, d\theta \][/tex]
Now, let [tex]\(u = \sin \theta\)[/tex]. Then, [tex]\(du = \cos \theta \, d\theta\)[/tex], and the integral becomes:
[tex]\[ \int \cos \theta \cdot (1 - \sin^2 \theta) \, d\theta = \int (1 - u^2) \, du \][/tex]
Integrate each term separately:
[tex]\[ \int 1 \, du - \int u^2 \, du = u - \frac{u^3}{3} + C \][/tex]
Substituting back [tex]\(u = \sin \theta\)[/tex]:
[tex]\[ \sin \theta - \frac{\sin^3 \theta}{3} + C \][/tex]
So, the antiderivative is:
[tex]\[ -\frac{\sin^3 \theta}{3} + \sin \theta + C \][/tex]
(b) [tex]\(\int \frac{\ln \left(x^2\right)}{x^2} \, dx\)[/tex]
We start by simplifying the integrand. Recall that:
[tex]\[ \ln(x^2) = 2 \ln(x) \][/tex]
Thus, the integral becomes:
[tex]\[ \int \frac{2 \ln(x)}{x^2} \, dx \][/tex]
Rewrite the integral by taking the constant out:
[tex]\[ 2 \int \frac{\ln(x)}{x^2} \, dx \][/tex]
Now, use integration by parts. Let:
[tex]\[ u = \ln(x) \quad \text{and} \quad dv = \frac{1}{x^2} \, dx \][/tex]
Then, [tex]\(du = \frac{1}{x} \, dx\)[/tex] and integrating [tex]\(dv\)[/tex] gives us [tex]\(v = -\frac{1}{x}\)[/tex].
Using the integration by parts formula, [tex]\(\int u \, dv = uv - \int v \, du\)[/tex], we get:
[tex]\[ 2 \left[ \ln(x) \left(-\frac{1}{x}\right) - \int \left(-\frac{1}{x}\right) \left(\frac{1}{x}\right) \, dx \right] \][/tex]
Simplify and solve the remaining integral:
[tex]\[ 2 \left[ -\frac{\ln(x)}{x} + \int \frac{1}{x^2} \, dx \right] \][/tex]
The remaining integral is straightforward:
[tex]\[ \int \frac{1}{x^2} \, dx = -\frac{1}{x} \][/tex]
Putting it all together:
[tex]\[ 2 \left( -\frac{\ln(x)}{x} - \frac{1}{x} \right) = -\frac{2 \ln(x)}{x} - \frac{2}{x} + C' \][/tex]
Thus, the antiderivative is:
[tex]\[ -\frac{\ln(x^2)}{x} - \frac{2}{x} + C \][/tex]
Putting it all together:
[tex]\[ -\frac{\log(x^2)}{x} - \frac{2}{x} + C \][/tex]
Hence, based on the simplifications and results:
The integral results are:
[tex]\[ (a) \, \int \cos^3 \theta \, d\theta = -\frac{\sin^3 \theta}{3} + \sin \theta + C \][/tex]
[tex]\[ (b) \, \int \frac{\ln \left(x^2\right)}{x^2} \, dx = -\frac{\log(x^2)}{x} - \frac{2}{x} + C \][/tex]
(a) [tex]\(\int \cos^3 \theta \, d\theta\)[/tex]
To integrate [tex]\(\cos^3 \theta\)[/tex], we can use a method known as reduction formulas or trigonometric identities.
First, we use the trigonometric identity for the cosine function:
[tex]\[ \cos^3 \theta = \cos \theta \cdot \cos^2 \theta = \cos \theta \cdot (1 - \sin^2 \theta) \][/tex]
Thus, rewriting the integral:
[tex]\[ \int \cos^3 \theta \, d\theta = \int \cos \theta \cdot (1 - \sin^2 \theta) \, d\theta \][/tex]
Now, let [tex]\(u = \sin \theta\)[/tex]. Then, [tex]\(du = \cos \theta \, d\theta\)[/tex], and the integral becomes:
[tex]\[ \int \cos \theta \cdot (1 - \sin^2 \theta) \, d\theta = \int (1 - u^2) \, du \][/tex]
Integrate each term separately:
[tex]\[ \int 1 \, du - \int u^2 \, du = u - \frac{u^3}{3} + C \][/tex]
Substituting back [tex]\(u = \sin \theta\)[/tex]:
[tex]\[ \sin \theta - \frac{\sin^3 \theta}{3} + C \][/tex]
So, the antiderivative is:
[tex]\[ -\frac{\sin^3 \theta}{3} + \sin \theta + C \][/tex]
(b) [tex]\(\int \frac{\ln \left(x^2\right)}{x^2} \, dx\)[/tex]
We start by simplifying the integrand. Recall that:
[tex]\[ \ln(x^2) = 2 \ln(x) \][/tex]
Thus, the integral becomes:
[tex]\[ \int \frac{2 \ln(x)}{x^2} \, dx \][/tex]
Rewrite the integral by taking the constant out:
[tex]\[ 2 \int \frac{\ln(x)}{x^2} \, dx \][/tex]
Now, use integration by parts. Let:
[tex]\[ u = \ln(x) \quad \text{and} \quad dv = \frac{1}{x^2} \, dx \][/tex]
Then, [tex]\(du = \frac{1}{x} \, dx\)[/tex] and integrating [tex]\(dv\)[/tex] gives us [tex]\(v = -\frac{1}{x}\)[/tex].
Using the integration by parts formula, [tex]\(\int u \, dv = uv - \int v \, du\)[/tex], we get:
[tex]\[ 2 \left[ \ln(x) \left(-\frac{1}{x}\right) - \int \left(-\frac{1}{x}\right) \left(\frac{1}{x}\right) \, dx \right] \][/tex]
Simplify and solve the remaining integral:
[tex]\[ 2 \left[ -\frac{\ln(x)}{x} + \int \frac{1}{x^2} \, dx \right] \][/tex]
The remaining integral is straightforward:
[tex]\[ \int \frac{1}{x^2} \, dx = -\frac{1}{x} \][/tex]
Putting it all together:
[tex]\[ 2 \left( -\frac{\ln(x)}{x} - \frac{1}{x} \right) = -\frac{2 \ln(x)}{x} - \frac{2}{x} + C' \][/tex]
Thus, the antiderivative is:
[tex]\[ -\frac{\ln(x^2)}{x} - \frac{2}{x} + C \][/tex]
Putting it all together:
[tex]\[ -\frac{\log(x^2)}{x} - \frac{2}{x} + C \][/tex]
Hence, based on the simplifications and results:
The integral results are:
[tex]\[ (a) \, \int \cos^3 \theta \, d\theta = -\frac{\sin^3 \theta}{3} + \sin \theta + C \][/tex]
[tex]\[ (b) \, \int \frac{\ln \left(x^2\right)}{x^2} \, dx = -\frac{\log(x^2)}{x} - \frac{2}{x} + C \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.